Improving palliative care with deep learning

Anand Avati1, Kenneth Jung2, Stephanie Harman3, Lance Downing2, Andrew Y. Ng1, Nigam H. Shah2
1Department of Computer Science, Stanford University, Stanford, CA, USA
2Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
3Department of Medicine,, Stanford University School of Medicine, Stanford, CA USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Where do americans die?Available: https://palliative.stanford.edu/home-hospice-home-care-of-the-dying-patient/where-do-americans-die/ . Accessed 15 Apr 2017.

Dumanovsky T, Augustin R, Rogers M, Lettang K, Meier DE, Sean Morrison R. Special Report The Growth of Palliative Care in U.S. Hospitals: A Status Report. J Palliat Med. 2016; 19(1):8–15.

palliative care, report card. 2015. Available: https://web.archive.org/web/20170316014732/https://reportcard.capc.org/#key-findings . Accessed 15 Apr 2017.

Spetz J, Dudley N, Trupin L, Rogers M, Meier DE, Dumanovsky T. Few Hospital Palliative Care Programs Meet National Staffing Recommendations. Health Aff (Project Hope). 2016; 9(9):1690–7.

Christakis N, Lamont E. Extent and determinants of error in doctors’ prognoses in terminally ill patients: prospective cohort study. BMJ Clin Res. 2000; 320(7233):469–72.

most physicians would forgo aggressive treatment for themselves at the end of life, study finds. 2014. Available: https://med.stanford.edu/news/all-news/2014/05/most-physicians-would-forgo-aggressive-treatment-for-themselves-.html . Accessed 15 Apr 2017.

Kutner JS, Steiner JF, Corbett KK, Jahnigen DW, Barton PL. Information needs in terminal illness. Soc Sci Med. 1999; 48(10):1341–52.

Steinhauser KE, Christakis NA, Clipp EC, Mcneilly M, Grambow S, Parker J, Tulsky JA. Preparing for the End of Life: Preferences of Patients, Families, Physicians, and Other Care Providers. J Pain Symptom Manag J Pain Symptom Manage. 2001; 2222:727.

Selby D, Chakraborty A, Lilien T, Stacey E, Zhang L, Myers J. Clinician Accuracy When Estimating Survival Duration: The Role of the Patient’s Performance Status and Time-Based Prognostic Categories. J Pain Symptom Manag. 2011; 42(4):578–88.

Viganȯ A, Dorgan M, Bruera E, Suarez-Almazor ME. The Relative Accuracy of the Clinical Estimation of the Duration of Life for Patients with End of Life Cancer. Cancer. 1999; 86(1):170–6.

Glare P, Sinclair C, Downing M, Stone P, Maltoni M, Vigano A. Predicting survival in patients with advanced disease. 2008; 4:2.

White N, Reid F, Harris A, Harries P, Stone P, Pulenzas N. A Systematic Review of Predictions of Survival in Palliative Care: How Accurate Are Clinicians and Who Are the Experts?PLoS ONE. 2016; 11(8):e0161407.

Macmillan DO. Accuracy of prediction of survival by different professional groups in a hospice. Palliat Med. 1998; 12:117–8.

Lau F, Downing GM, Lesperance M, Shaw J, Kuziemsky C. Use of Palliative Performance Scale in End-of-Life Prognostication. J Palliat Med. 2006; 9(5):1066–75.

Karnofsky DA, Abelmann WH, Craver LF, Burchenal JH. The use of the nitrogen mustards in the palliative treatment of carcinoma.With particular reference to bronchogenic carcinoma. Cancer. 1948; 1(4):634–56.

Pirovano M, Maltoni M, Nanni O, Marinari M, Indelli M, Zaninetta G, Petrella V, Barni S, Zecca E, Scarpi E, Labianca R, Amadori D, Luporini G. A New Palliative Prognostic Score: A First Step for the Staging of Terminally Ill Cancer Patients for the Italian Multicenter and Study Group on Palliative Care. J Pain Symptom Manag Pirovano et al. 1997;17(4):231–9.

Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985; 13(10):818–29.

Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, Sirio CA, Murphy DJ, Lotring T, Damiano A, Harrell FE. The APACHE III Prognostic System. Chest. 1991; 100(6):1619–36.

Le Gall J-R, Lemeshow S, Saulnier F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. J Am Med Assoc. 1993; 12(24):2957.

Cardona-Morrell M, Hillman K. Development of a tool for defining and identifying the dying patient in hospital: Criteria for Screening and Triaging to Appropriate aLternative care (CriSTAL). BMJ Support Palliat Care. 2015; 3(1):78–90.

Fischer SM, Gozansky WS, Sauaia A, Min S-J, Kutner JS, Kramer A. A Practical Tool to Identify Patients Who May Benefit from a Palliative Approach: The CARING Criteria. J Pain Symptom Manag. 2006; 31(4):285–92.

Richardson P, Greenslade J, Shanmugathasan S, Doucet K, Widdicombe N, Chu K, Brown A. PREDICT: a diagnostic accuracy study of a tool for predicting mortality within one year: Who should have an advance healthcare directive?Palliat Med. 2015; 29(1):31–7.

Horne BD, May HT, Muhlestein JB, Ronnow BS, Lappė DL, Renlund DG, Kfoury AG, Carlquist JF, Fisher PW, Pearson RR, Bair TL, Anderson JL. Exceptional Mortality Prediction by Risk Scores from Common Laboratory Tests. AJM. 2009; 122:550–8.

Cowen ME, Strawderman RL, Czerwinski JL, Smith MJ, Halasyamani LK, Cowen ME. Mortality predictions on admission as a context for organizing care activities. J Hosp Med. 2013; 5(5):229–35.

Meffert C, Ru̇cker G, Hatami I, Becker G. Identification of hospital patients in need of palliative care-a predictive score. BMC Palliat Care. 2016;15. https://doi.org/10.1186/s12904-016-0094-7 .

Ramchandran KJ, Shega JW, Von Roenn J, Schumacher M, Szmuilowicz E, Rademaker A, Weitner BB, Loftus PD, Chu IM, Weitzman S. A predictive model to identify hospitalized cancer patients at risk for 30-day mortality based on admission criteria via the electronic medical record. Cancer. 2013; 6(11):2074–80.

Amarasingham R, Moore BJ, Tabak YP, Drazner MH, Clark CA, Zhang S, Reed WG, Swanson TS, Ma Y, Halm EA. An Automated Model to Identify Heart Failure Patients at Risk for 30-Day Readmission or Death Using Electronic Medical Record Data. Med Care. 2010; 48(11):981–8.

Tabak YP, Johannes RS, Silber JH. Using Automated Clinical Data for Risk Adjustment. Medical Care. 2007; 45(8):789–805.

Makar M, Ghassemi M, Cutler D, Obermeyer Z. Short-Term Mortality Prediction for Elderly Patients Using Medicare Claims Data. Int J Mach Learn Comput. 2015; 5(3):192–7.

Sim I, FH Z, SM T, SY H, N Z, Y H, M N. Two Ways of Knowing: Big Data and Evidence-Based Medicine. Ann Intern Med. 2016; 164(8):562.

Obermeyer Z, Emanuel EJ. Predicting the Future - Big Data, Machine Learning, and Clinical Medicine. N Engl J Med. 2016; 9(13):1216–9.

Rose S. Mortality Risk Score Prediction in an Elderly Population Using Machine Learning. Am J Epidemiol. 2013; 3(5):443–52.

Wiemken TL, Furmanek SP, Mattingly WA, Guinn BE, Cavallazzi R, Fernandez-Botran R, Wolf LA, English CL, Ramirez JA. Predicting 30-day mortality in hospitalized patients with community-acquired pneumonia using statistical and machine learning approaches. J Respir Infect. 2017; 1(3):5.

Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, Andreini D, Budoff MJ, Cademartiri F, Callister TQ, Chang H-J, Chinnaiyan K, Chow BJ, Cury RC, Delago A, Gomez M, Gransar H, Hadamitzky M, Hausleiter J, Hindoyan N, Feuchtner G, Kaufmann PA, Kim Y-J, Leipsic J, Lin FY, Maffei E, Marques H, Pontone G, Raff G, Rubinshtein R, Shaw LJ, Stehli J, Villines TC, Dunning A, Min JK, Slomka PJ. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2016; 25(7):ehw188.

Cooper GF, Aliferis CF, Ambrosino R, Aronis J, Buchanon BG. An Evaluation of Machine-Learning Methods for Predicting Pneumonia Mortality. Artif Intell Med. 1997; 9(2):107–38.

Vomlel J, Kružík H, Tma P, Přeček J, Hutyra M. Machine Learning Methods for Mortality Prediction in Patients with ST Elevation Myocardial Infarction. In the Proceedings of The Nineth Workshop on Uncertainty Processing WUPES’12, Mariánské Lázně, Czech Republic. 2012. p. 204–213.

Avati A, Jung K, Harman S, Downing L, Ng A, Shah NH. Improving palliative care with deep learning. IEEE; 2017. pp. 311–316. Available: http://ieeexplore.ieee.org/document/8217669/ .

Lowe HJ, Ferris TA, Hernandez Nd PM, Weber SC. STRIDE – An Integrated Standards-Based Translational Research Informatics Platform. In: AMIA Annual Symposium Proceedings.2009. p. 391–5. Conference paper (AMIA Symposium).

LeCun Y, Bengio Y, Hinton G. Deep Learning. Nature. 2015; 521:436–44.

Klambauer G, Unterthiner T, Mayr A, Hochreiter S Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R, (eds).Self-normalizing neural networks; 2017. pp. 972–981. Curran Associates, Inc. Available: http://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf . Accessed 2 Nov 2018.

Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR).2014. Conference paper (ICLR).

Pytorch. Available: https://pytorch.org . Accessed 2 Nov 2018.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011; 12:2825–30.

He H, Garcia E. Learning from Imbalanced Data. IEEE Trans Knowl Data Eng. 2009; 9(9):1263–84.

Davis J, Goadrich M. The Relationship Between Precision-Recall and ROC Curves. In: Proceedings of the 23rd international conference on Machine learning. 2006. p. 233–40. Conference paper (ICML).

Boyd K, Santos Costa V, Davis J, Page CD. Unachievable Region in Precision-Recall Space and Its Effect on Empirical Evaluation. In: Proceedings of the 29th International Coference on International Conference on Machine Learning Pages. 2012. p. 1619–26. Conference paper (ICML).

Yuan Y, Su W, Zhu M. Threshold-free measures for assessing the performance of medical screening tests. Front Public Health. 2015; 3:57.

Manning CD, Raghavan P, Schütze H. Introduction to Information Retrieval. New York: Cambridge University Press; 2008. Conference paper (KDD).

Ribeiro MT, Singh S, Guestrin C. Why Should I Trust You?: Explaining the Predictions of Any Classifier. In: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016. p. 1135–44.

Lipton ZC. The Mythos of Model Interpretability. Queue. 2018;16(3). https://doi.org/10.1145/3236386.3241340 .