Improving mechanical and thermal properties of high-density polyethylene/wood flour nanocomposites
Tóm tắt
In the present research, mechanical and thermal properties of high-density polyethylene/wood flour were improved by incorporating nanoclay (Cloisite 30B) and antioxidant (Irganox B225) in the compound. Design of experiments was carried out to optimize composition among nine compounds and to investigate the effect of nanoclay and antioxidant (0–5 phr) and (0–0.4 phr), respectively. The results of mechanical tests showed approximately 24% increase in the tensile strength of compounds containing 2.5 and 5.0 part per hundred (phr) of the nanoclay in the composite compared with the same samples without nanoclay. The tensile modulus of composites increased 7.3% by increasing the level of nanoclay from 0 to 2.5 phr. However, a further increase in the nanoclay content led to a 4.3% decrease in tensile modulus. Evaluation of the thermal oxidation stability of samples confirmed that the thermal oxidation of composites decreased with increasing nanoclay from 0 to 5.0 phr and increased significantly with the addition of the antioxidant.
Tài liệu tham khảo
Abareshi M, Shahroodi SM. Effects of silver nanoparticles on the thermal properties of polyethylene matrix nanocomposites. J Therm Anal Calorim. 2017;128(2):1117–24. https://doi.org/10.1007/s10973-016-6036-z.
Sun Q, Yuan Y, Zhang H, Cao X, Sun L. Thermal properties of polyethylene glycol/carbon microsphere composite as a novel phase change material. J Therm Anal Calorim. 2017;130(3):1741–9. https://doi.org/10.1007/s10973-017-6535-6.
Viksne A, Berzina R, Andersone I, Belkova L. Study of plastic compounds containing polypropylene and wood derived fillers from waste of different origin. J Appl Polym Sci. 2010;117(1):368–77.
Haddou G, Dandurand J, Dantras E, Maiduc H, Thai H, Giang NV, et al. Mechanical and thermal behaviour of bamboo flour-reinforced XLPE composites. J Therm Anal Calorim. 2016;124(2):701–8. https://doi.org/10.1007/s10973-015-5176-x.
Sun L, Wu Q, Xie Y, Song K, Lee S, Wang Q. Thermal decomposition of fire-retarded wood flour/polypropylene composites. J Therm Anal Calorim. 2016;123(1):309–18. https://doi.org/10.1007/s10973-015-4971-8.
Mohanty A, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng. 2000;276(1):1–24.
Kebritchi A, Nekoomansh M, Mohammadi F, Khonakdar HA. Effect of microstructure of high density polyethylene on catalytic degradation: a comparison between nano clay and FCC. J Polym Environ. 2017. https://doi.org/10.1007/s10924-017-1053-y.
Kord B, Hemmasi AH, Ghasemi I. Properties of PP/wood flour/organomodified montmorillonite nanocomposites. Wood Sci Technol. 2011;45(1):111–9.
Tjong SC. Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep. 2006;53(3):73–197.
Maiti P, Nam PH, Okamoto M, Kotaka T, Hasegawa N, Usuki A. The effect of crystallization on the structure and morphology of polypropylene/clay nanocomposites. Polym Eng Sci. 2002;42(9):1864–71.
Wu Q, Lei Y, Yao F, Xu Y, Lian K, editors. Properties of HDPE/clay/wood nanocomposites. In: 2007 First international conference on integration and commercialization of micro and nanosystems; 2007. American Society of Mechanical Engineers.
Neisiany RE, Khorasani SN, Naeimirad M, Lee JKY, Ramakrishna S. Improving mechanical properties of carbon/epoxy composite by incorporating functionalized electrospun polyacrylonitrile nanofibers. Macromol Mater Eng. 2017;302(5):1600551. https://doi.org/10.1002/mame.201600551.
Neisiany RE, Khorasani SN, Lee JKY, Naeimirad M, Ramakrishna S. Interfacial toughening of carbon/epoxy composite by incorporating styrene acrylonitrile nanofibers. Theoret Appl Fract Mech. 2018;95:242–7. https://doi.org/10.1016/j.tafmec.2018.03.006.
Sharifi A, Khorasani SN, Borhani S, Neisiany RE. Alumina reinforced nanofibers used for exceeding improvement in mechanical properties of the laminated carbon/epoxy composite. Theoret Appl Fract Mech. 2018;96:193–201. https://doi.org/10.1016/j.tafmec.2018.05.001.
Esnaashari C, Khorasani SN, Entezam M, Khalili S. Mechanical and water absorption properties of sawdust—low density polyethylene nanocomposite. J Appl Polym Sci. 2013;127(2):1295–300.
Kord B. Nanofiller reinforcement effects on the thermal, dynamic mechanical, and morphological behavior of HDPE/rice husk flour composites. BioResources. 2011;6(2):1351–8.
Lei Y, Wu Q, Clemons CM, Yao F, Xu Y. Influence of nanoclay on properties of HDPE/wood composites. J Appl Polym Sci. 2007;106(6):3958–66.
Dintcheva NT, Al-Malaika S, La Mantia FP. Effect of extrusion and photo-oxidation on polyethylene/clay nanocomposites. Polym Degrad Stab. 2009;94(9):1571–88.
Wong W-K, Cheng S, Li CY, Ahmad I, Cairncross R, Hsuan YG. Depletion mechanism of antioxidants in MDPE-clay nanocomposites under thermal aging. Polym Degrad Stab. 2012;97(2):192–9.
Shah RK, Paul D. Organoclay degradation in melt processed polyethylene nanocomposites. Polymer. 2006;47(11):4075–84.
Xie W, Gao Z, Pan W-P, Hunter D, Singh A, Vaia R. Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater. 2001;13(9):2979–90.
Gao X, Meng X, Wang H, Wen B, Ding Y, Zhang S, et al. Antioxidant behaviour of a nanosilica-immobilized antioxidant in polypropylene. Polym Degrad Stab. 2008;93(8):1467–71.
Najafabadi MA, Khorasani SN, Esfahani JM. Water absorption behaviour and mechanical properties of high density polyethylene/pistachio shell flour nanocomposites in presence of two different UV stabilizers. Polym Polym Compos. 2014;22(4):409.
Akbulut T, Ayrilmis N, Dundar T, Durmus A, White RH, Teker M. Effect of boron and phosphate compounds on thermal and fire properties of wood/HDPE composites. Review Process: Formally Refereed. 2011.
Enayati MS, Behzad T, Sajkiewicz P, Bagheri R, Ghasemi-Mobarakeh L, Łojkowski W, et al. Crystallinity study of electrospun poly (vinyl alcohol) nanofibers: effect of electrospinning, filler incorporation, and heat treatment. Iran Polym J. 2016;25(7):647–59. https://doi.org/10.1007/s13726-016-0455-3.
Zadhoush A, Reyhani R, Naeimirad M. Evaluation of surface modification impact on PP/MWCNT nanocomposites by rheological and mechanical characterization, assisted with morphological image processing. Polym Compos. 2018;55:55. https://doi.org/10.1002/pc.24799.
Brune DA, Bicerano J. Micromechanics of nanocomposites: comparison of tensile and compressive elastic moduli, and prediction of effects of incomplete exfoliation and imperfect alignment on modulus. Polymer. 2002;43(2):369–87.
Sisakht Mohsen R, Saied NK, Ali Z, Hosein EM, Hasan P. Theoretical and experimental determination of tensile properties of nanosized and micron-sized CaCO3/PA66 composites. Polym Compos. 2009;30(3):274–80. https://doi.org/10.1002/pc.20602.
Kim G-M, Lee D-H, Hoffmann B, Kressler J, Stöppelmann G. Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polymer. 2001;42(3):1095–100.
Klyosov AA. Wood-plastic composites. New York: Wiley; 2007.
Ehrenstein GW, Riedel G, Trawiel P. Thermal analysis of plastics: theory and practice. Munich: Carl Hanser Verlag GmbH Co KG; 2012.
Dörner G, Lang R. Influence of various stabilizer systems on the ageing behavior of PE–MD—I. Hot-water ageing of compression molded plaques. Polym Degrad Stab. 1998;62(3):421–30.
Pospıšil J, Horák Z, Pilař J, Billingham N, Zweifel H, Nešpůrek S. Influence of testing conditions on the performance and durability of polymer stabilisers in thermal oxidation. Polym Degrad Stab. 2003;82(2):145–62.