Cải thiện tăng trưởng, hàm lượng omega-3 và khả năng kháng bệnh của cá vược châu Á: tình trạng của chương trình nhân giống dựa trên gia đình trong 20 năm

Reviews in Fish Biology and Fisheries - Tập 34 - Trang 91-110 - 2023
G. H. Yue1,2, L. Wang1, F. Sun1, Z. T. Yang1, J. Wong1, Y. F. Wen1, H. Y. Pang1, M. Lee1, S. T. Yeo1, B. Liang3, K. Chen3, H. S. Lim3, J. H. Jiang3
1Temasek Life Sciences Laboratory, National University of Singapore, Queenstown, Singapore
2Department of Biological Sciences, National University of Singapore, Queenstown, Singapore
3Marine Aquaculture Center (MAC), Singapore Food Agency (SFA), Jem, Singapore

Tóm tắt

Nuôi trồng thủy sản đã trở thành một trong những lĩnh vực phát triển nhanh nhất trong nông nghiệp và đóng vai trò quan trọng trong việc cung cấp protein chất lượng cao cho con người. Việc cải thiện gen cho các đặc điểm quan trọng là rất cần thiết để tăng sản lượng nuôi trồng thủy sản. Ngành nuôi cá vược châu Á (Lates calcarifer) đã trở nên quan trọng ở Đông Nam Á và Úc và đã mở rộng sang các quốc gia khác. Tại Singapore, một chương trình nhân giống đã được khởi xướng vào năm 2004, nhằm cải thiện tốc độ tăng trưởng, hàm lượng omega-3 cao và khả năng kháng bệnh trong các quần thể cá vược châu Á. Nhiều tài nguyên công nghệ gen đã được phát triển để đạt được các mục tiêu này. Chương trình nhân giống được thành lập với 549 cá cái giống được thu thập từ tự nhiên ở Indonesia, Thái Lan, Malaysia và Singapore. Thông qua bốn thế hệ lựa chọn dựa trên gia đình, sử dụng kết hợp giữa phương pháp nhân giống chọn lọc thông thường, phân tích cha mẹ bằng phân tử, lựa chọn hỗ trợ bởi dấu ấn và kỹ thuật chọn lọc gen, ba dòng tinh hoa khác biệt của cá vược châu Á đã được thiết lập thành công. Mỗi dòng gồm khoảng 200 cá cái giống. Những dòng này được chọn lọc dựa trên tăng trưởng, hàm lượng omega-3 cao hơn và khả năng kháng bệnh tương ứng. Các đặc điểm này đã được cải thiện mà không làm giảm đáng kể biến đổi di truyền. Bài tổng quan này cung cấp cái nhìn tổng quát về các phương pháp đã áp dụng và tình trạng cải thiện gen của các đặc điểm nêu trên. Đồng thời, một số khoảng trống trong khối nghiên cứu hiện tại đã được xác định. Trong tương lai, những đặc điểm bổ sung liên quan đến khả năng sử dụng thức ăn với cá xay giảm, cũng như khả năng thích ứng với biến đổi khí hậu và kháng lại các căn bệnh mới nổi nên được đưa vào chương trình nhân giống.

Từ khóa

#nuôi trồng thủy sản #cá vược châu Á #cải thiện gen #chọn lọc hỗ trợ bởi dấu ấn #hàm lượng omega-3 #khả năng kháng bệnh

Tài liệu tham khảo

Ambali AJD, Doyle RW (1997) Genetic diversity analysis of Oreochromis shiranus species in reservoirs in Malawi. Colloquium on Genetics and Aquaculture in Africa, Abidjan, Cote Ivoire, pp 211–226 Araujo BC, Symonds JE, Glencross BD, Carter CG, Walker SP, Miller MR (2021) A review of the nutritional requirements of chinook salmon (Oncorhynchus tshawytscha). N Z J Mar Freshw Res 57:161–190 Bakri AM, Esa Y (2021) Analysis of genetic diversity in five captive population of Asian Seabass (Lates calcarifer) for selective breeding in Malaysia, 1ST postgraduate seminar on agriculture and forestry 2021 (PSAF 2021), pp 71 Behera BK, Singh SD, Sahu B, Singh NS, Das P, Maharana J, Sharma AP (2014) Genetic diversity of Asian sea bass, Lates calcarifer (Bloch) populations in India revealed by randomly amplified polymorphic DNA. Proc Natl Acad Sci India Sect B Biol Sci 84:1013–1019 Berlinsky DL, Kenter LW, Reading BJ, Goetz FW (2020) Regulating reproductive cycles for captive spawning. Fish physiology. Elsevier, pp 1–52 Boler DD (2014) Species of meat animals: pigs. In: Dikeman M, Devine C (eds) Encyclopaedia of meat sciences. Elsevier, London, pp 363–368 Boonyaratpalin M, Williams K, Webster CandLim C (2002) Asian sea bass, Lates calcarifer. In: Webster CD, Lim C (Eds) Nutrient Requirements and Feeding of Finfish for Aquaculture, New York, USA, pp 40–51 Boudry P, Allal F, Aslam ML, Bargelloni L, Bean TP, Brard-Fudulea S, Brieuc MS, Calboli FC, Gilbey J, Haffray P (2021) Current status and potential of genomic selection to improve selective breeding in the main aquaculture species of International Council for the Exploration of the Sea (ICES) member countries. Aquac Rep 20:100700 Burdge GC, Calder PC (2005) Conversion of -linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 45:581–597 Calder PC (2013) Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol 75:645–662 Campoy C, Escolano-Margarit MV, Anjos T, Szajewska HR (2012) Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br J Nutr 107:S85–S106 Cheong L, Yeng L (1987) Status of seabass (Lates calcarifer) culture in Singapore. in: Copland JW, Grey DL (Eds) in Management of wild and cultured seabass/barramundi, Proceedings of an international workshop held at Darwin, N. T. Australia, 24–30 September 198, pp 65–68 Cuzon G, Chou R, Fuchs J (1989) Nutrition of the seabass Lates calcarifer. Advances in Tropical Aquaculture, Workshop at Tahiti, French Polynesia, 20 Feb-4 Mar 1989 de Groof A, Guelen L, Deijs M, van der Wal Y, Miyata M, Ng KS, van Grinsven L, Simmelink B, Biermann Y, Grisez L (2015) A novel virus causes scale drop disease in Lates calcarifer. PLoS Pathog 11:e1005074 Delgado-Lista J, Perez-Martinez P, Lopez-Miranda J, Perez-Jimenez F (2012) Long chain omega-3 fatty acids and cardiovascular disease: a systematic review. Br J Nutr 107:S201–S213 Domingos JA, Smith-Keune C, Harrison P, Jerry DR (2014) Early prediction of long-term family growth performance based on cellular processes—A tool to expedite the establishment of superior foundation broodstock in breeding programs. Aquaculture 428:88–96 Elvy JE, Symonds JE, Hilton Z, Walker SP, Tremblay LA, Casanovas P, Herbert NA (2022) The relationship of feed intake, growth, nutrient retention, and oxygen consumption to feed conversion ratio of farmed saltwater Chinook salmon (Oncorhynchus tshawytscha). Aquaculture 554:738184 FAO (2009) Lates calcarifer. In: Cultured aquatic species fact sheets. https://www.fao.org/fishery/docs/DOCUMENT/aquaculture/CulturedSpecies/file/en/en_barramundi.htm, Rome, Italy FAO (2022) The state of world fisheries and aquaculture. FAO, Rome, Italy Frost LA, Evans BS, Jerry DR (2006) Loss of genetic diversity due to hatchery culture practices in barramundi (Lates calcarifer). Aquaculture 261:1056–1064 Fu G, Yuna Y (2022) Phenotyping and phenomics in aquaculture breeding. Aquac Fish 7:140–146 Galappaththi EK, Ichien ST, Hyman AA, Aubrac CJ, Ford JD (2020) Climate change adaptation in aquaculture. Rev Aquac 12:2160–2176 Garlock T, Asche F, Anderson J, Ceballos-Concha A, Love DC, Osmundsen TC, Pincinato RBM (2022) Aquaculture: the missing contributor in the food security agenda. Glob Food Secur 32:100620 Geldermann H, Pieper U, Roth B (1985) Effects of marked chromosome sections on milk performance in cattle. Theor Appl Genet 70:138–146 Gil M, Crespo PS (2012) Omega 3 fatty acids and inborn errors of metabolism. Br J Nutr 107:S129–S136 Gjedrem T (2000) Genetic improvement of cold-water fish species. Aquac Res 31:25–33 Gjedrem T (2005) Selection and breeding programs in aquaculture. Springer, Dordrecht Gjedrem T, Robinson N, Rye M (2012) The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350:117–129 Hickey J, Gorjanc G, Cleveland M, Kranis A, Jenko J, Mésázros G (2013) Sequencing millions of animals for genomic selection 2.0. J Anim Breed Genet 130:331–332 Houston RD, Bean TP, Macqueen DJ, Gundappa MK, Jin YH, Jenkins TL, Selly SLC, Martin SA, Stevens JR, Santos EM (2020) Harnessing genomics to fast-track genetic improvement in aquaculture. Nat Rev Genet 21:389–409 Hutson KS (2013) Infectious diseases of Asian seabass and health management. In: DR J. (Ed) Biology and culture of Asian Seabass Lates calcarifer. CRC Press, Taylor and Francis Group, USA, pp 102–136 Janssen K, Chavanne H, Berentsen P, Komen H (2017) Impact of selective breeding on European aquaculture. Aquaculture 472:8–16 Jerry DR (2013) Biology and culture of Asian seabass Lates calcarifer. CRC Press, Singapore Joerakate W, Yenmak S, Senanan W, Tunkijjanukij S, Koonawootrittriron S, Poompuang S (2018) Growth performance and genetic diversity in four strains of Asian sea bass, Lates calcarifer (Bloch, 1790) cultivated in Thailand. Agric Natur Res 52:93–98 Khang PV, Phuong TH, Dat NK, Knibb W, Nguyen NH (2018) An 8-year breeding program for Asian seabass Lates calcarifer: genetic evaluation, experiences, and challenges. Front Genet 9:191 Kingsbury N (2011) Hybrid: the history and science of plant breeding. University of Chicago Press Kocour M, Gela D, Rodina M, Flajshans M (2010) Performance of different tench, Tinca tinca (L.), groups under semi-intensive pond conditions: it is worth establishing a coordinated breeding program. Rev Fish Biol Fish 20:345–355 Li Y, Chia JM, Bartfai R, Christoffels A, Yue GH, Ding K, Ho MY, Hill JA, Stupka E, Orban L (2004) Comparative analysis of the testis and ovary transcriptomes in zebrafish by combining experimental and computational tools. Comp Funct Genom 5:403–418 Lim L, Heng H, Lee H (1986) The induced breeding of seabass, Lates calcarifer (Bloch) in Singapore. Singap J Prim Indust 14:81–95 Lin G, Thevasagayam NM, Wan ZY, Ye BQ, Yue GH (2019) Transcriptome analysis identified genes for growth and omega-3/-6 ratio in saline tilapia. Front Genet 10:244 Liu P, Xia JH, Lin G, Sun F, Liu F, Lim HS, Pang HY, Yue GH (2012) Molecular parentage analysis is essential in breeding Asian seabass. PLoS One 7:e51142 Liu P, Wang L, Kwang J, Yue GH, Wong SM (2016a) Transcriptome analysis of genes responding to NNV infection in Asian seabass epithelial cells. Fish Shellfish Immunol 54:342–352 Liu P, Wang L, Wan ZY, Ye BQ, Huang SQ, Wong SM, Yue GH (2016b) Mapping QTL for resistance against viral nervous necrosis disease in Asian seabass. Mar Biotechnol 18:107–116 Liu P, Wang L, Wong SM, Yue GH (2016c) Fine mapping QTL for resistance to VNN disease using a high-density linkage map in Asian seabass. Sci Rep 6:32122 Liu P, Xia JH, Sun F, Wang L, Yang Z, Lee M, Pang HY, Wen YF, Yue GH (2023) Breeding Asian seabass to increase survival against big belly disease and growth. Aquac Fish. https://doi.org/10.1016/j.aaf.2022.08.004 Loughnan SR, Domingos JA, Smith-Keune C, Forrester JP, Jerry DR, Beheregaray LB, Robinson NA (2013) Broodstock contribution after mass spawning and size grading in barramundi (Lates calcarifer, Bloch). Aquaculture 404:139–149 Loughnan SR, Smith-Keune C, Beheregaray LB, Robinson NA, Jerry DR (2019) Population genetic structure of barramundi (Lates calcarifer) across the natural distribution range in Australia informs fishery management and aquaculture practices. Mar Freshw Res 70:1533–1542 Lucas JS, Southgate PC, Tucker CS (2019) Aquaculture: Farming aquatic animals and plants. Wiley, New York Macbeth GM, Palmer PJ (2011) A novel breeding programme for improved growth in barramundi Lates calcarifer (Bloch) using foundation stock from progeny-tested parents. Aquaculture 318:325–334 Merican Z (2020a) Spearheading research in marine aquaculture in the region. Aquac Asia Pacif 16:26–27 Merican Z (2020b) Merger creates largest fully integrated barramundi enterprise. Aquac Asia Pacif 16:5 Moore R (1979) Natural sex inversion in the giant perch (Lates calcarifer). Aust J Mar Freshw Res 30:803–813 Nash CE (1977) The breeding and cultivation of marine fish species for mariculture, Troisième réunion du groupe de travail du CIEM sur la mariculture/Third meeting of the ICES working group on mariculture–Brest, France–10–13 mai 1977 Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, Little DC, Lubchenco J, Shumway SE, Troell M (2021) A 20-year retrospective review of global aquaculture. Nature 591:551–563 Ng SK, Lau CC, Tan MP, Mohd Nor SA, Danish-Daniel M, Afiqah-Aleng N, Muchlisin ZA, Fadli N (2023) Using a transcriptomic approach to understand poor growth performance in farmed orange-spotted grouper (Epinephelus coioides) larvae: a case study in a commercial hatchery. N Z J Mar Freshw Res: 1–20 Ngoh SY, Tan D, Shen X, Kathiresan P, Jiang J, Liew WC, Thevasagayam NM, Kwan HY, Saju JM, Prakki SR (2015) Nutrigenomic and nutritional analyses reveal the effects of pelleted feeds on Asian seabass (Lates calcarifer). PLoS One 10:e0145456 Nurliyana M, Lukman B, Ina-Salwany M, Zamri-Saad M, Annas S, Dong H, Rodkhum C, Amal M (2020) First evidence of scale drop disease virus in farmed Asian seabass (Lates calcarifer) in Malaysia. Aquaculture 528:735600 Ødegård J, Baranski M, Gjerde B, Gjedrem T (2011) Methodology for genetic evaluation of disease resistance in aquaculture species: challenges and future prospects. Aquac Res 42:103–114 O’Reilly PT, Kozfkay CC (2014) Use of microsatellite data and pedigree information in the genetic management of two long-term salmon conservation programs. Rev Fish Biol Fish 24:819–848 Olsen RL, Hasan MR (2012) A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci Technol 27:120–128 Pandian T, Kirankumar S (2003) Recent advances in hormonal induction of sex-reversal in fish. J Appli Aquac 13:205–230 Pattarapanyawong N, Sukhavachana S, Senanan W, Srithong C, Joerakate W, Tunkijjanukij S, Poompuang S (2021) Genetic parameters for growth and fillet traits in Asian seabass (Lates calcarifer, Bloch 1790) population from Thailand. Aquaculture 539:736629 Rahman MA, Lee SG, Yusoff FM, Rafiquzzaman S (2018) Hybridization and its application in aquaculture. In: Han-Ping W, Francesc P, Song-Lin C, Shen ZG (eds) Sex control in aquaculture. Wiley, West Sussex, pp 163–178 Ravisankar T, Thirunavukkarasu A (2010) Market prospects of farmed Asian seabass Lates calcarifer (Bloch). Indian J Fish 57:49–53 Roberts BH, Morrongiello JR, Morgan DL, King AJ, Saunders TM, Crook DA (2021) Faster juvenile growth promotes earlier sex change in a protandrous hermaphrodite (barramundi Lates calcarifer). Sci Rep 11:2276 Robinson NA, Schipp G, Bosmans J, Jerry DR (2010) Modelling selective breeding in protandrous, batch-reared Asian sea bass (Lates calcarifer, Bloch) using walkback selection. Aquac Res 41:e643–e655 Rothbard S, Biton I, Kulikovski Z (2010) Breeding, production and marketing of golden tench (Tinca tinca (L.)) in Gan Shmuel Fish Breeding Center. Israel. Rev Fish Biol Fish 20:367–373 Roy D (2021) Asian Sea Bass Market to grow at 5.5% CAGR through 2031, https://www.einnews.com/pr_news/560333316/asian-sea-bass-market-to-grow-at-5-5-cagr-through-2031 Safner R, Treer T, Aničić I, Kolak A (2001) Dressing percentage of four Croatian common carp (Cyprinus Carpio L.) populations. Croat J Fish 59:131–141 Sampath-Kumar R, Byers R, Munro A, Lam T (1995) Profile of cortisol during the ontogeny of the Asian seabass, Lates calcarifer. Aquaculture 132:349–359 Senapin S, Dong HT, Meemetta W, Gangnonngiw W, Sangsuriya P, Vanichviriyakit R, Sonthi M, Nuangsaeng B (2019) Mortality from scale drop disease in farmed Lates calcarifer in Southeast Asia. J Fish Dis 42:119–127 Shen Y, Ma K, Yue GH (2021) Status, challenges and trends of aquaculture in Singapore. Aquaculture 533:736210 Sivaloganathan B, Walford J, Ip Y, Lam T (1998) Free amino acids and energy metabolism in eggs and larvae of seabass, Lates calcarifer. Mar. Biol. 131:695–702 Stankus A (2021) State of world aquaculture 2020 and regional reviews: FAO webinar series. FAO Aquac Newsl 63:17–18 Stark AH, Crawford MA, Reifen R (2008) Update on alpha-linolenic acid. Nutr Rev 66:326–332 Sun F, Tu RJ, Xia JH, Liu XJ, Yue GH (2018) The FTO gene is associated with growth and omega-3/-6 ratio in Asian seabass. Mar Biotechnol 20:603–610 Sun F, Wen YF, Wang L, Yue GH (2020) An indel in the Suv39h1 gene is associated with resistance to iridovirus in the Asian seabass. Aquaculture 529:735611 Tay YX, Yu Y, Yang Z, Wang L, Sun F, Yue GH (2023) Characterization of pIgR and its association with resistance to iridovirus in Asian seabass. Aquaculture 562:738783 Tenugu S, Senthilkumaran B (2022) Sexual plasticity in bony fishes: analyzing morphological to molecular changes of sex reversal. Aquac Fish 7:525–539 Tocher DR (2015) Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449:94–107 Tur J, Bibiloni M, Sureda A, Pons A (2012) Dietary sources of omega 3 fatty acids: public health risks and benefits. Br J Nutr 107:S23–S52 Vij S, Kuhl H, Kuznetsova IS, Komissarov A, Yurchenko AA, Van Heusden P, Singh S, Thevasagayam NM, Prakki SRS, Purushothaman K, Saju JM, Jiang J, Mbandi SK, Jonas M, Tong AHY, Mwangi S, Lau D, Ngoh SY, Liew WC, Shen XY, Hon LS, Drake JP, Boitano M, Hall R, Chin CS, Lachumanan R, Korlach J, Trifonov V, Kabilov M, Tupikin A, Green D, Moxon S, Garvin T, Sedlazeck FJ, Vurture GW, Gopalapillai G, Katneni VK, Noble TH, Scaria V, Sivasubbu S, Jerry DR, O’Brien SJ, Schatz MC, Dalmay T, Turner SW, Lok S, Christoffels A, Orban L (2016) Chromosomal-level assembly of the Asian seabass genome using long sequence reads and multi-layered scaffolding. PLoS Genet 12:e1005954 Walford J, Lam T (1993) Development of digestive tract and proteolytic enzyme activity in seabass (Lates calcarifer) larvae and juveniles. Aquaculture 109:187–205 Walford J, Lim T, Lam T (1991) Replacing live foods with microencapsulated diets in the rearing of seabass (Lates calcarifer) larvae: do the larvae ingest and digest protein-membrane microcapsules? Aquaculture 92:225–235 Wang CM, Bai ZY, He XP, Lin G, Xia JH, Sun F, Lo LC, Feng F, Zhu ZY, Yue GH (2011) A high-resolution linkage map for comparative genome analysis and QTL fine mapping in Asian seabass Lates calcarifer. BMC Genom 12:174 Wang L, Bai B, Huang S, Liu P, Wan ZY, Ye B, Wu J, Yue GH (2017) QTL mapping for resistance to iridovirus in Asian seabass using genotyping-by-sequencing. Mar Biotechnol 19:517–527 Wang L, Bai B, Liu P, Huang SQ, Wan ZY, Chua E, Ye BQ, Yue GH (2017) Construction of high-resolution recombination maps in Asian seabass. BMC Genom 18:63 Wang W, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6:109–118 Wang L, Chua E, Sun F, Wan ZY, Ye BQ, Pang HY, Wen YF, Yue GH (2019) Mapping and validating QTL for fatty acid compositions and growth traits in Asian Seabass. Mar Biotechnol 21:643–654 Wang L, Liu P, Huang S, Ye B, Chua E, Wan ZY, Yue GH (2017) Genome-wide association study identifies loci associated with resistance to viral nervous necrosis disease in Asian seabass. Mar Biotechnol 19:255–265 Wang CM, Lo LC, Feng F, Gong P, Li J, Zhu ZY, Lin G, Yue GH (2008) Construction of a BAC library and mapping BAC clones to the linkage map of Barramundi Lates calcarifer. BMC Genom 9:139 Wang CM, Lo LC, Feng F, Zhu ZY, Yue GH (2008) Identification and verification of QTL associated with growth traits in two genetic backgrounds of Barramundi (Lates calcarifer). Anim Genet 39:34–39 Wang CM, Lo LC, Zhu ZY, Lin G, Feng F, Li J, Yang WT, Tan J, Chou R, Lim HS, Orban L, Yue GH (2008) Estimating reproductive success of brooders and heritability of growth traits in Asian sea bass (Lates calcarifer) using microsatellites. Aquac Res 39:1612–1619 Wang CM, Lo LC, Zhu ZY, Yue GH (2006) A genome scan for quantitative trait loci affecting growth-related traits in an F1 family of Asian seabass (Lates calcarifer). BMC Genom 7:274 Wang L, Sun F, Wan ZY, Yang Z, Tay YX, Lee M, Ye B, Wen Y, Meng Z, Fan B (2022) Transposon-induced epigenetic silencing in the X chromosome as a novel form of dmrt1 expression regulation during sex determination in the fighting fish. BMC Biol 20:4075 Wang L, Sun F, Wen YF, Yue GH (2021) Effects of Ocean Acidification on Transcriptomes in Asian Seabass Juveniles. Mar Biotechnol 23:445–455 Wang L, Wan ZY, Lim HS, Yue GH (2016) Genetic variability, local selection and demographic history: genomic evidence of evolving towards allopatric speciation in Asian seabass. Mol Ecol 25:3605–3621 Wang CM, Zhu ZY, Lo LC, Feng F, Lin G, Yang WT, Li J, Yue GH (2007) A microsatellite linkage map of Barramundi, Lates calcarifer. Genetics 175:907–915 Wong J, Tay YX, Yue GH (2023a) Developing a predictive growth models for Asian seabass using four generations of data. Aquac Fish in press Wong J, Sun F, Tay YX, Wang L, Yang ZT, Wen YF, Pang HY, Lee M, Yeo ST, Liang B, Chen K, Jiang JH, GH Y (2023b) Changes in genetic diversity of Asian seabass in a 20-year breeding program. Aquaculture 575:739738 Xia JH, Yue GH (2010) Identification and analysis of immune-related transcriptome in Asian seabass Lates calcarifer. BMC Genom 11:356 Xia JH, Feng F, Lin G, Wang CM, Yue GH (2010) A first generation BAC-based physical map of the Asian seabass (Lates calcarifer). PLoS One 5:e11974 Xia JH, He XP, Bai ZY, Lin G, Yue GH (2011) Analysis of the Asian seabass transcriptome based on expressed sequence tags. DNA Res 18:513–522 Xia JH, Lin G, He X, Liu P, Liu F, Sun F, Tu R, Yue GH (2013a) Whole genome scanning and association mapping identified a significant association between growth and a SNP in the IFABP-a gene of the Asian seabass. BMC Genom 14:295 Xia JH, Liu P, Liu F, Lin G, Sun F, Tu RJ, Yue GH (2013b) Analysis of stress-responsive transcriptome in the intestine of Asian seabass (Lates calcarifer) using RNA-Seq. DNA Res 20:449–460 Xia JH, Lin G, He X, Yunping B, Liu P, Liu F, Sun F, Tu R, Yue GH (2014) Mapping quantitative trait loci for omega-3 fatty acids in Asian seabass. Mar Biotechnol 16:1–9 Xu YX, Zhu ZY, Lo LC, Wang CM, Lin G, Feng F, Yue GH (2006) Characterization of two parvalbumin genes and their association with growth traits in Asian seabass (Lates calcarifer). Anim Genet 37:266–268 Yang ZT, Wong SM, Yue GH (2020) Characterization of GAB3 and its association with NNV resistance in the Asian seabass. Fish Shellfish Immunol 104:18–24 Yang Z, Yue GH, Wong S-M (2022) VNN disease and status of breeding for resistance to NNV in aquaculture. Aquac Fish 7:147–157 Ye B, Wan Z, Wang L, Pang H, Wen Y, Liu H, Liang B, Lim HS, Jiang J, Yue G (2017) Heritability of growth traits in the Asian seabass (Lates calcarifer). Aquac Fish 2:112–118 Yu YP, Yang ZT, Sun F, Wang L, Lee M, Yue GH (2021) Two SNPs in SNX2 are associated with SGIV resistance in Asian seabass. Aquaculture 540:736695 Yue GH (2014) Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish Fish 15:376–396 Yue GH, Xia JH (2014) Practical considerations of molecular parentage analysis in fish. J World Aquacult Soc 45:89–103 Yue G, Wang L (2017) Current status of genome sequencing and its applications in aquaculture. Aquaculture 468:337–347 Yue K, Shen Y (2022) An overview of disruptive technologies for aquaculture. Aquac Fish 7:111–120 Yue G, Li Y, Orban L (2001) Characterization of microsatellites in the IGF-2 and GH genes of Asian seabass (Lates calcarifer). Mar Biotechnol 3:1–3 Yue GH, Zhu ZY, Lo LC, Wang CM, Lin G, Fenf F, Pang HY, Li J, Gong P, Liu HM, Tan J, Chou R, Lim H, Orban L (2009) Genetic variation and population structure of Asian seabass (Lates calcarifer) in the Asia-Pacific region. Aquaculture 293:22–28 Yue GH, Xia JH, Liu P, Liu F, Sun F, Lin G (2012) Tracing Asian seabass individuals to single fish farms using microsatellites. PLoS One 7:e52721 Yue GH, Orban L, Lim HS (2017) Current status of the asian seabass breeding program. Aquaculture 472:85–85 Yue GH, Wang L, Yang Z, Sun F, Tay YX, Wong J, Yeo S (2023) Genomic resources and their applications in aquaculture of Asian seabass (Lates calcarifer). Rev Aquac 15(2):853–871 Zhu ZY, Lin G, Lo LC, Xu YX, Feng F, Chou R, Yue GH (2006) Genetic analyses of Asian seabass stocks using novel polymorphic microsatellites. Aquaculture 256:167–173 Zhu ZY, Wang CM, Lo LC, Lin G, Feng F, Tan J, Chou R, Lim HS, Orban L, Yue GH (2010) A standard panel of microsatellites for Asian seabass (Lates calcarifer). Anim Genet 41:208–212