Cải thiện khả năng tái tạo trong chụp cộng hưởng từ chức năng

Oxford University Press (OUP) - Tập 4 - Trang 1-8 - 2015
Cyril Pernet1, Jean-Baptiste Poline2
1Centre for Clinical Brain Sciences, Neuroimaging Sciences, University of Edinburgh Chancellor’s Building, Edinburgh, UK
2Henry H Wheeler, Jr Brain Imaging Center, Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, USA

Tóm tắt

Khả năng tái tạo toàn bộ một thí nghiệm là điều cực kỳ quan trọng đối với phương pháp khoa học. Với sự phát triển của nhiều mô hình phức tạp hơn, cũng như sự đa dạng của các kỹ thuật phân tích hiện có, các nghiên cứu fMRI đang trở nên khó tái hiện hơn. Trong bài viết này, chúng tôi nhằm đưa ra những lời khuyên thực tiễn cho các nhà nghiên cứu fMRI chưa quen với công nghệ thông tin, nhằm làm cho các nghiên cứu trở nên khả thi hơn. Tất cả những bước này yêu cầu các nhà nghiên cứu phải tiến tới một khoa học mở hơn, trong đó tất cả các khía cạnh của phương pháp thí nghiệm đều được tài liệu hóa và chia sẻ. Chỉ bằng cách chia sẻ thí nghiệm, dữ liệu, siêu dữ liệu, dữ liệu được phát sinh và các quy trình phân tích, khoa học hình ảnh thần kinh mới có thể khẳng định mình như một khoa học dữ liệu thực thụ.

Từ khóa

#chụp cộng hưởng từ chức năng #tái tạo thí nghiệm #khoa học mở #dữ liệu huyết tương #phân tích dữ liệu

Tài liệu tham khảo

Galton F. Biometry. Biometrika. 1901;1(1):7–10. Irreproducible LJ, Results E. Causes, (Mis)interpretations, and Consequences. Circulation. 2012;125:1211–4. Stodden V, Leisch F, Peng RD. Implementing Reproducible Research. Victoria: Taylor and Francis group CRC Press; 2014. Ioannidis JPA. Why Most Published Research Findings Are False. PLoS Med. 2005;2(8):e124. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14(5):365–76. Simonsohn U, Nelson LD, Simmons JP. P-curve: A key to the file-drawer. J Exp Psychol Gen. 2014;143:534–47. Carp J. On the plurality of (methodological) worlds: Estimating the analytic flexibility of fMRI experiments. Front Neurosci. 2012;6(149). Aurich NK, Alves Filho JO, MarquesdaSilva AM, Franco AR. Evaluating the Reliability of Different Preprocessing Steps to Estimate Graph Theoretical Measures in Resting State fMRI data. Front Neurosci. 2015;9:48. Simmons JP, Nelson LD, Simonsohn U. False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant. Psychol Sci. 2011;22(11):1359–66. Donoho DL, Maleki A, Rahman I, Shahram M, Stodden V. Reproducible Research in Computational Harmonic Analysis. Comput Sci Eng. 2009;11(1):8–18. Monogan J. The Controversy of Preregistration in Social Research [Internet]. [cited 2015 Mar 13]. Available from: http://bitss.org/2014/06/13/preregistration-controversy/. Rosenthal R. The file drawer problem and tolerance for null results. Psychol Bull. 1979;86:638. Marwick B. Reproducible Research: A Primer for the Social Sciences [Internet]. Rpres: Reproducibility; 2014. Available from: https://raw.githubusercontent.com/benmarwick/CSSS-Primer-Reproducible-Research/master/CSSS_WI14_Reproducibility.Rpres. Drummond C. Replicability is not reproducibility: nor is it good science. Evaluation Methods for Machine Learning Workshop [Internet]. Montreal, Quebec, CA; 2009. Available from: http://cogprints.org/7691/7/ICMLws09.pdf. Peng RD. Reproducible Research in Computational Science. Science. 2011;334:1226–7. Reproducibility [Internet]. Wikipedia. [cited 2013 Mar 13]. Available from: http://en.wikipedia.org/wiki/Reproducibility. Dryad [Internet]. [cited 2015 Mar 13]. Available from: http://datadryad.org/. FigShare [Internet]. [cited 2015 Mar 13]. Available from: http://figshare.com/. OpenScience framework [Internet]. [cited 2015 Mar 13]. Available from: https://osf.io/. Zenodo [Internet]. [cited 2015 Mar 13]. Available from: http://zenodo.org/. Poldrack RA, Fletcher PC, Henson RN, Worsley KJ, Brett M, Nichols TE. Guidelines for reporting an fMRI study. Neuroimage. 2008;40(2):409–14. Ince DC, Hatton L, Graham-Cumming J. The case for open computer programs. Nature. 2012;482:485–8. Osborne JM, Bernabeu MO, Bruna M, Calderhead B, Cooper J, Dalchau N, et al. Ten Simple Rules for Effective Computational Research. PLoS Comput Biol. 2014;10(3):e1003506. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for Reproducible Computational Research. PLoS Comput Biol. 2013;9(10):e1003285. Wellcome Trust Centre for Neuroimaging. Statistical Parametric Mapping [Internet]. [cited 2015 Mar 13]. Available from: http://www.fil.ion.ucl.ac.uk/spm/. Flandin G, Friston KJ. Statistical parametric mapping (SPM). Scholarpedia. 2008;3(4):6332. Ghosh S, Gorgolewski K. Neuroimaging in Pythom Pipelines and Interfaces [Internet]. [cited 2015 Mar 13]. Available from: http://nipy.sourceforge.net/nipype/. Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, et al. Nipype: A flexible, lightweight and extensible neuroimaging data processing framework. Front Neuroinformatics. 2011;5(13). Cox RW. Analysis of Functional NeuroImages [Internet]. [cited 2015 Mar 13]. Available from: http://afni.nimh.nih.gov/afni/. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;28:162–73. FMRIB, Analysis Group. FMRIB Software Library [Internet]. [cited 2015 Mar 13]. Available from: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/. Jenkinson M, Beckmann CF, Behrens T, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62:782–90. NeuroImaging Tool and Resources Clearinghouse [Internet]. [cited 2015 Mar 13]. Available from: http://www.nitrc.org/. Gronenschild EHBM, Habets P, Jacobs HIL, Mengelers R, Rozendaal N, van Os J, et al. The Effects of FreeSurfer Version, Workstation Type, and Macintosh Operating System Version on Anatomical Volume and Cortical Thickness Measurements. PLoS One. 2012;7(6):e38234. Halchenko Y, Hanke M. Open is not enough. Let’s take the next step: An integrated, community-driven computing platform for neuroscience. Front. Neuroinformatics. 2012;6:22. snapshot.debian.org [Internet]. [cited 2013 Mar 13]. Available from: http://snapshot.debian.org/. Comparison of revision control software [Internet]. Wikipedia. [cited 2013 Mar 13]. Available from: http://en.wikipedia.org/wiki/Comparison_of_revision_control_software. Stodden V. The scientific method in practice: Reproducibility in the computational sciences. MIT Sloan Res Pap. 2010;4773–10. Barnes N. Publish your computer code: it is good enough. Nature. 2010;467:753. git [Internet]. [cited 2015 Mar 13]. Available from: http://git-scm.com/. Subversion [Internet]. [cited 2015 Mar 13]. Available from: http://subversion.apache.org/. Github [Internet]. [cited 2015 Mar 13]. Available from: https://github.com/. Bitbucket [Internet]. [cited 2015 Mar 13]. Available from: https://bitbucket.org/. Workflow [Internet]. Wikipedia. [cited 2015 Mar 13]. Available from: http://en.wikipedia.org/wiki/Workflow. Bellec P. PSOM [Internet]. [cited 2015 Mar 13]. Available from: https://github.com/SIMEXP/psom. Bellec P, Lavoie-Courchesne S, Dickinson P, Lerch J, Zijdenbos A, Evans AC. The pipeline system for Octave and Matlab (PSOM): a lightweight scripting framework and execution engine for scientific workflows. Front Neuroinformatics. 2012;6(7). Mitchell D, Auer T. Automatic Analysis pipeline [Internet]. [cited 2015 Mar 13]. Available from: http://imaging.mrc-cbu.cam.ac.uk/imaging/AA. Cusack R, Vicente-Grabovetsky A, Mitchell DJ, Wild CJ, Auer T, Linke A, et al. Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using Matlab and XML. Front Neuroinformatics. 2015;8(90). IPython Notebook [Internet]. [cited 2015 Mar 13]. Available from: http://ipython.org/notebook.html. Taverna [Internet]. [cited 2015 Mar 13]. Available from: http://www.taverna.org.uk/. Kepler [Internet]. [cited 2015 Mar 13]. Available from: https://kepler-project.org/. Laboratory of Neuro Imaging. LONI pipeline [Internet]. [cited 2015 Mar 13]. Available from: http://pipeline.bmap.ucla.edu/. Torgerson CM, Quinn C, Dinov I, Liu Z, Petrosyan P, Pelphrey K, et al. Interacting with the National Database for Autism Research (NDAR) via the LONI Pipeline workflow environment. Brain Imaging Behav. 2015;9;89–103. Poline J-B, Breeze JL, Ghosh S, Gorgolewski K, Halchenko YO, Hanke M, et al. Data sharing in neuroimaging research. Front Neuroinformatics. 2012. Gorgolewski K, Storkey AJ, Bastin ME, Whittle I, Wardlaw J, Pernet CR. A test-retest fMRI dataset for motor, language and spatial attention functions. Gigascience. 2013;2:6. Hanke M, Baumgartner FJ, Ibe P, Kaule FR, Pollmann S, Speck O, et al. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie. Sci Data. 2014 May 27;1. Poldrack RA. OpenfMRI [Internet]. [cited 2015 Mar 13]. Available from: https://openfmri.org/. Poldrack RA, Barch DM, Mitchell JP, Wager TD, Wagner AD, Devlin JT, et al. Toward open sharing of task-based fMRI data: the OpenfMRI project. Front Neuroinformatics. 2013;7. fMRI Data Center [Internet]. [cited 2015 Mar 13]. Available from: http://databib.org/repository/371. Van Horn JD, Gazzaniga MS. Why share data? Lessons learned from the fMRIDC. Neuroimage. 2013;82:677–82. Calhoun VD. A spectrum of sharing: maximization of information content for brain imaging data. GigaScience. 2015 Dec;4(1). Laboratory for Computational Neuroimaging. MRI Deface. [cited 2015 Mar 13]. Available from: http://www.nitrc.org/projects/mri_deface/. Bischoff-Grethe A, Ozyurt IB, Busa E, Quinn BT, Fennema-Notestine C, Clark CP, et al. A Technique for the Deidentification of Structural Brain MR Images. Hum Brain Mapp. 2007;28(9):892–903. Goodman A, Pepe A, Blocker AW, Borgman C, Cranner K, Crosas M, et al. Ten Simple Rules for the Care and Feeding of Scientific Data. PLoS Comput Biol. 2014;10(4):e1003542. World Wide Web Consortium Provenance Group [Internet]. [cited 2015 Mar 13]. Available from: http://www.w3.org/2011/prov/wiki/Main_Page. Poldrack RA, Gorgolewski KJ. Making big data open: data sharing in neuroimaging. Nat Neurosci. 2014;17:11. International Neuroinformatics Coordinating Facility [Internet]. Available from: http://www.incf.org/. Neuroinformatics Coordinating Facility data sharing task force [Internet]. [cited 2015 Mar 13]. Available from: http://wiki.incf.org/mediawiki/index.php/Neuroimaging_Task_Force. Neuro-Imaging Data Model [Internet]. [cited 2015 Mar 13]. Available from: http://nidm.nidash.org/. Johnson VE. Revised Standards for Statistical Evidence. Proc Natl Acad Sci U S A. 2013;110(48):19313–7. Jernigan TL, Gamst AC, Fennema-Notestine C, Ostergaard AL. More “mapping” in brain mapping: Statistical comparison of effects. Hum Brain Mapp. 2003;19(2):90–5. Gorgolewski K. NeuroVault [Internet]. [cited 2015 Mar 13]. Available from: http://neurovault.org/. Gorgolewski K, Varoquaux G, Rivers G, Schwartz Y, Ghosh SS, Maumet C, et al. NeuroVault.org: A web-based repository for collecting and sharing unthresholded statistical maps of the human brain. Bio Arch X. 2014;pre-print. Rousselet GA, Pernet CR. Improving standards in brain-behavior correlation analyses. Front Hum Neurosci. 2012;6. Creative Commons organization [Internet]. [cited 2015 Mar 13]. Available from: http://creativecommons.org/choose/. Open Data Commons [Internet]. [cited 2015 Mar 13]. Available from: http://opendatacommons.org/licenses/pddl/. Piwowar HA, Day RS, Fridsma DB. Sharing Detailed Research Data Is Associated with Increased Citation Rate. PLoS One. 2007;2(3):e308. Harnad S. Publish or Perish — Self-Archive to Flourish: The Green Route to Open Access. Eur Res Consort Inform Math. 2006;64.