Improving bee health through genomics

Nature Reviews Genetics - Tập 21 Số 5 - Trang 277-291 - 2020
Christina M. Grozinger1, Amro Zayed2
1Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
2Department of Biology, York University, Toronto, ON, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Steffan-Dewenter, I., Potts, S. G. & Packer, L. Pollinator diversity and crop pollination services are at risk. Trends Ecol. Evol. 20, 651–652 (2005).

Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. Lond. B Biol. Sci. 274, 303–313 (2007).

Williams, P., Colla, S. & Xie, Z. Bumblebee vulnerability: common correlates of winners and losers across three continents. Conserv. Biol. 23, 931–940 (2009).

Grixti, J. C., Wong, L. T., Cameron, S. A. & Favret, C. Decline of bumble bees (Bombus) in the North American Midwest. Biol. Conserv. 142, 75–84 (2009).

Colla, S. R., Otterstatter, M. C., Gegear, R. J. & Thomson, J. D. Plight of the bumblebee: pathogen spillover from commercial to wild populations. Biol. Conserv. 129, 461–467 (2006).

Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).

Gallai, N., Salles, J., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).

Hunt, G. J. & Page, R. E. J. Linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics 139, 1371–1382 (1995).

Hunt, G. J., Page, R. E. J., Fondrk, M. K. & Dullum, C. J. Major quantitative trait loci affecting honey bee foraging behavior. Genetics 141, 1537–1545 (1995).

Dogantzis, K. A. & Zayed, A. Recent advances in population and quantitative genomics of honey bees. Curr. Opin. Insect Sci. 31, 93–98 (2019).

Grozinger, C. M. & Flenniken, M. L. Bee viruses: ecology, pathogenicity, and impacts. Annu. Rev. Entomol. 64, 205–226 (2019).

Lozier, J. D. & Zayed, A. Bee conservation in the age of genomics. Conserv. Genet. 18, 713–729 (2017).

Weinstock, G. M. et al. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949 (2006).

Zayed, A. Bee genetics and conservation. Apidologie 40, 237–262 (2009).

Liczner, A. R. & Colla, S. R. A systematic review of the nesting and overwintering habitat of bumble bees globally. J. Insect Conserv. https://doi.org/10.1007/s10841-019-00173-7 (2019).

Darvill, B., Knight, M. E. & Goulson, D. Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos 107, 471–478 (2004).

Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547–549 (2017). This study provides an excellent example of how population genetics can be combined with landscape data to understand the habitat requirements of at-risk pollinators.

Jha, S. & Kremen, C. Urban land use limits regional bumble bee gene flow. Mol. Ecol. 22, 2483–2495 (2013).

Kent, C. F. et al. Conservation genomics of the declining North American bumblebee Bombus terricola reveals inbreeding and selection on immune genes. Front. Genet. 9, 316 (2018).

Beadle, K. et al. Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis. PLoS Genet. 15, e1007903 (2019).

Manjon, C. et al. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Curr. Biol. 28, 1137–1143 (2018).

Hayward, A. et al. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat. Ecol. Evol. 3, 1521–1524 (2019).

Sponsler, D. B. et al. Pesticides and pollinators: a socioecological synthesis. Sci. Total. Env. 662, 1012–1027 (2019).

Nazzi, F. & Le Conte, Y. Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Annu. Rev. Entomol. 61, 417–432 (2016).

Martin, S. J. & Brettell, L. E. Deformed wing virus in honeybees and other insects. Annu Rev Virol. https://doi.org/10.1146/annurev-virology-092818-015700 (2019).

Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Sci. 351, 594–597 (2016).

Arbetman, M. O., Meeus, I., Morales, C. L., Aizen, M. A. & Smagghe, G. Alien parasite hitchhikes to Patagonia on invasive bumblebee. Biol. Invasion 15, 489–494 (2012).

Harpur, B. A., Minaei, S., Kent, C. F. & Zayed, A. Admixture increases diversity in managed honey bees. Reply to De la Rúa et al. (2013). Mol. Ecol. 22, 3211–3215 (2013).

Schneider, S. S., DeGrandi-Hoffman, G. & Smith, D. R. The African honey bee: factors contributing to a successful biological invasion. Annu. Rev. Entomol. 49, 351–376 (2004).

Zayed, A. & Whitfield, C. W. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera. Proc. Natl Acad. Sci. USA 105, 3421–3426 (2008).

Francoy, T. M., Goncalves, L. S. & De Jong, D. Rapid morphological changes in populations of hybrids between Africanized and European honey bees. Genet. Mol. Res. 11, 3349–3356 (2012).

Harpur, B. A. et al. Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. Proc. Natl Acad. Sci. USA 111, 2614–2619 (2014).

Chapman, N. C. et al. A SNP test to identify Africanized honeybees via proportion of ‘African’ ancestry. Mol. Ecol. Resour. 15, 1346–1355 (2015).

Harpur, B. A. et al. Assessing patterns of admixture and ancestry in Canadian honey bees. Insect Soc. 62, 479–489 (2015).

Requier, F. et al. The conservation of native honey bees is crucial. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2019.04.008 (2019).

Muñoz, I. et al. SNPs selected by information content outperform randomly selected microsatellite loci for delineating genetic identification and introgression in the endangered dark European honeybee (Apis mellifera mellifera). Mol. Ecol. Resour. 17, 783–795 (2017).

Henriques, D. et al. Developing reduced SNP assays from whole-genome sequence data to estimate introgression in an organism with complex genetic patterns, the Iberian honeybee (Apis mellifera iberiensis). Evolut. Appl. 11, 1270–1282 (2018).

Harbo, J. R. & Harris, J. W. Heritability in honey bees (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae). J. Econ. Entomol. 92, 261–265 (1999).

Koffler, S., Kleinert, A. d. M. P. & Jaffé, R. Quantitative conservation genetics of wild and managed bees. Conserv. Genet. 18, 689–700 (2017).

Stanimirovic, Z., Stevanovic, J., Aleksic, N. & Velibor, S. Heritability of grooming behaviour in grey honey bees (Apis mellifera Carnica). Acta Vet. 60, 313–323 (2009).

Decanini, L. I., Collins, A. M. & Evans, J. D. Variation and heritability in immune gene expression by diseased honeybees. J. Hered. 98, 195–201 (2007).

Wilfert, L., Gadau, J., Baer, B. & Schmid-Hempel, P. Natural variation in the genetic architecture of a host-parasite interaction in the bumblebee Bombus terrestris. Mol. Ecol. 16, 1327–1339 (2007).

Wilfert, L., Gadau, J. & Schmid-Hempel, P. The genetic architecture of immune defense and reproduction in male Bombus terrestris bumblebees. Evolution 61, 804–815 (2007).

Nino, E. L. & Cameron Jasper, W. Improving the future of honey bee breeding programs by employing recent scientific advances. Curr. Opin. Insect Sci. 10, 163–169 (2015).

Ibrahim, A. G., Reuter, M. & Spivak, M. Field trials of honey bee colonies bred for mechanisms of resistance against Varroa destructor. Apidologie 38, 67–76 (2006).

Spivak, M. & Gilliam, M. Hygienic behaviour of honey bees and its application for control of brood diseases and Varroa. Part I. Hygienic behaviour and resistance to American foulbrood. Bee World 79, 124–134 (1998).

Baudry, E. et al. Relatedness among honeybees (Apis mellifera) of a drone congregation. Proc. Biol. Sci. 265, 2009–2014 (1998).

Behrens, D. et al. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor. Ecol. Evol. 1, 451–458 (2011).

Behrens, D. & Moritz, R. F. QTL-mapping of individual resistance against American foulbrood in haploid honeybee drone larvae (Apis mellifera). Apidologie 45, 409–417 (2014).

Guzman-Novoa, E., Hunt, G. J., Uribe, J. L., Smith, C. & Arechavaleta-Velasco, M. E. Confirmation of QTL effects and evidence of genetic dominance of honeybee defensive behavior: results of colony and individual behavioral assays. Behav. Genet. 32, 95–102 (2002).

McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008).

Korte, A. & Farlow, A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29 (2013).

Wallberg, A., Schöning, C., Webster, M. T. & Hasselmann, M. Two extended haplotype blocks are associated with adaptation to high altitude habitats in East African honey bees. PLoS Genet. 13, e1006792 (2017).

Wallberg, A., Pirk, C. W., Allsopp, M. H. & Webster, M. T. Identification of multiple loci associated with social parasitism in honeybees. PLoS Genet. 12, e1006097 (2016).

Wragg, D. et al. Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly. Sci. Rep. 6, 27168 (2016).

Harpur, B. A. et al. Integrative genomics reveals the genetics and evolution of the honey bee’s social immune system. Genome Biol. Evol. 11, 937–948 (2019). In this study, the combined use of artificially selected lines and population genomics allows the researchers to unravel the complex genetics of social immunity in honeybees.

Avalos, A. et al. A soft selective sweep during rapid evolution of gentle behaviour in an Africanized honeybee. Nat. Commun. 8, 1550 (2017).

Broeckx, B. J. G. et al. Honey bee predisposition of resistance to ubiquitous mite infestations. Sci. Rep. 9, 7794 (2019).

Kruglyak, L. The road to genome-wide association studies. Nat. Rev. Genet. 8, 314–318 (2008).

Wu, Y., Zheng, Z., Visscher, P. M. & Yang, J. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data. Genome Biol. 18, 86 (2017).

Guarna, M. M. et al. Peptide biomarkers used for the selective breeding of a complex polygenic trait in honey bees. Sci. Rep. 7, 8381 (2017). This study provides a clear demonstration of the use of marker-assisted selection in honeybees.

Zanni, V., Galbraith, D. A., Annoscia, D., Grozinger, C. M. & Nazzi, F. Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera). Insect Biochem. Mol. Biol. 87, 1–13 (2017).

Brutscher, L. M., Daughenbaugh, K. F. & Flenniken, M. L. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Sci. Rep. 7, 6448 (2017).

Shi, T. F., Wang, Y. F., Liu, F., Qi, L. & Yu, L. S. Sublethal effects of the neonicotinoid insecticide thiamethoxam on the transcriptome of the honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 110, 2283–2289 (2017).

Corby-Harris, V., Jones, B. M., Walton, A., Schwan, M. R. & Anderson, K. E. Transcriptional markers of sub-optimal nutrition in developing Apis mellifera nurse workers. BMC Genom. 15, 134 (2014).

Azzouz-Olden, F., Hunt, A. & DeGrandi-Hoffman, G. Transcriptional response of honey bee (Apis mellifera) to differential nutritional status and Nosema infection. BMC Genom. 19, 628 (2018).

Amsalem, E., Galbraith, D. A., Cnaani, J., Teal, P. E. & Grozinger, C. M. Conservation and modification of genetic and physiological toolkits underpinning diapause in bumble bee queens. Mol. Ecol. 24, 5596–5615 (2015).

Torson, A. S. et al. Physiological responses to fluctuating temperatures are characterized by distinct transcriptional profiles in a solitary bee. J. Exp. Biol. 220, 3372–3380 (2017).

Durant, D. R., Berens, A. J., Toth, A. L. & Rehan, S. M. Transcriptional profiling of overwintering gene expression in the small carpenter bee, Ceratina calcarata. Apidologie 47, 572–582 (2016).

Ankley, G. T. et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Env. Toxicol. Chem. 29, 730–741 (2010).

Barron, A. B. Death of the bee hive: understanding the failure of an insect society. Curr. Opin. Insect Sci. 10, 45–50 (2015).

Amdam, G. V., Fennern, E. & Havukainen, H. in Honey Bee Neurobiology and Behavior (eds Galizia, C., Eisenhardt, D., & Guirfa, M.) 17–29 (Springer, 2012).

Alaux, C. et al. Measuring biological age to assess colony demographics in honeybees. PLoS One 13, e0209192 (2018). In this study, molecular markers are used to measure the ‘biological age’ of individual honeybees and evaluate the impacts of different stressors and management regimes.

Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L. & Neumann, P. Predictive markers of honey bee colony collapse. PLoS One 7, e32151 (2012).

Ricigliano, V. A. et al. Honey bee colony performance and health are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Sci. Rep. 9, 4894 (2019).

Schmehl, D. R., Teal, P. E., Frazier, J. L. & Grozinger, C. M. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J. Insect Physiol. 71, 177–190 (2014).

Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141 (2015).

Mao, W., Schuler, M. A. & Berenbaum, M. R. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proc. Natl Acad. Sci. USA 110, 8842–8846 (2013).

Di Prisco, G. et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl Acad. Sci. USA 110, 18466–18471 (2013).

De Smet, L. et al. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses. PLoS One 7, e47953 (2012).

Massuti, B., Sanchez, J. M., Hernando-Trancho, F., Karachaliou, N. & Rosell, R. Are we ready to use biomarkers for staging, prognosis and treatment selection in early-stage non-small-cell lung cancer? Transl Lung Cancer Res. 2, 208–221 (2013).

Adnane, M., Kelly, P., Chapwanya, A., Meade, K. G. & O’Farrelly, C. Improved detection of biomarkers in cervico-vaginal mucus (CVM) from postpartum cattle. BMC Vet. Res. 14, 297 (2018).

Brutscher, L. M., Daughenbaugh, K. F. & Flenniken, M. L. Antiviral defense mechanisms in honey bees. Curr. Opin. Insect Sci. 10, 71–82 (2015).

Kunieda, T. et al. Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Mol. Biol. 15, 563–576 (2006).

Claudianos, C. et al. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 15, 615–636 (2006).

Doublet, V. et al. Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genom. 18, 207 (2017). This article describes a meta-analysis of several transcriptomic studies that identified genes that responded either to several or to only one of the pathogens or parasites tested, indicating that host transcriptional responses can be used to diagnose the particular pathogen or parasite that is infecting a bee.

Wheeler, M. M. & Robinson, G. E. Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup. Sci. Rep. 4, 5726 (2014).

Alaux, C., Dantec, C., Parrinello, H. & Le Conte, Y. Nutrigenomics in honey bees: digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC Genom. 12, 12–496 (2011).

Wu, M. C., Chang, Y. W., Lu, K. H. & Yang, E. C. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage. Insect Biochem. Mol. Biol. 88, 12–20 (2017).

Wang, L. et al. Metabolomics-based biomarker discovery for bee health monitoring: a proof of concept study concerning nutritional stress in Bombus terrestris. Sci. Rep. 9, 11423 (2019).

Raymann, K. & Moran, N. A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr. Opin. Insect Sci. 26, 97–104 (2018).

Dharampal, P. S., Carlson, C., Currie, C. R. & Steffan, S. A. Pollen-borne microbes shape bee fitness. Proc. Biol. Sci. 286, 20182894 (2019).

Galbraith, D. A. et al. Investigating the viral ecology of global bee communities with high-throughput metagenomics. Sci. Rep. 8, 8879 (2018). In this study, metagenomics is used to characterize the viruses infecting 12 bee species in populations collected from nine countries.

Ryabov, E. V. et al. Recent spread of Varroa destructor virus-1, a honey bee pathogen, in the United States. Sci. Rep. 7, 17447 (2017).

Ray, A. M. et al. Distribution of recently identified bee-infecting viruses in managed honey bee (Apis mellifera) populations in the United States. Apidologie (in the press).

Cornman, R. S. Relative abundance of deformed wing virus, Varroa destructor virus 1, and their recombinants in honey bees (Apis mellifera) assessed by kmer analysis of public RNA-Seq data. J. Invertebr. Pathol. 149, 44–50 (2017).

Singh, R. et al. RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS One 5, e14357 (2010).

Schoonvaere, K., Smagghe, G., Francis, F. & de Graaf, D. C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 9, 177 (2018).

Piot, N. et al. Establishment of wildflower fields in poor quality landscapes enhances micro-parasite prevalence in wild bumble bees. Oecologia 189, 149–158 (2019).

Li, J. L. et al. Systemic spread and propagation of a plant-pathogenic virus in European honeybees, Apis mellifera. mBio 5, e00898-13 (2014).

Roberts, J. M. K., Ireland, K. B., Tay, W. T. & Paini, D. Honey bee-assisted surveillance for early plant virus detection. Ann. Appl. Biol. 173, 285–293 (2018).

Fung, E. et al. De novo assembly of honey bee RNA viral genomes by tapping into the innate insect antiviral response pathway. J. Invertebr. Pathol. 152, 38–47 (2018).

Ryabov, E. V. et al. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 10, e1004230 (2014).

Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl Acad. Sci. USA 114, 4775–4780 (2017).

Kwong, W. K., Mancenido, A. L. & Moran, N. A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 4, 170003 (2017).

Moran, N. A. Genomics of the honey bee microbiome. Curr. Opin. Insect Sci. 10, 22–28 (2015).

Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl Acad. Sci. USA 115, 10305–10310 (2018).

Raymann, K., Shaffer, Z. & Moran, N. A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15, e2001861 (2017).

Raymann, K., Coon, K. L., Shaffer, Z., Salisbury, S. & Moran, N. A. Pathogenicity of Serratia marcescens strains in honey bees. mBio 9, e01649-18 (2018).

Steele, M. I., Kwong, W. K., Whiteley, M. & Moran, N. A. Diversification of type VI secretion system toxins reveals ancient antagonism among bee gut microbes. mBio 8, e01630-17 (2017).

El Khoury, S. et al. Deleterious interaction between honeybees (Apis mellifera) and its microsporidian intracellular parasite Nosema ceranae was mitigated by administrating either endogenous or allochthonous gut microbiota strains. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00058 (2018).

Bascompte, J. & Jordano, P. Networks: the architecture of plant-animal mutualistic biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).

Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl Acad. Sci. USA 113, E4035–E4042 (2016).

Cane, J. H. & Snipes, S. in Plant-Pollinator Interactions: From Specializations to Generalization (eds N. M. Wasser & J. Ollerton) 99–122 (University of Chicago Press, 2006).

Couvillon, M. J., Schurch, R. & Ratnieks, F. L. Waggle dance distances as integrative indicators of seasonal foraging challenges. PLoS One 9, e93495 (2014).

Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).

Richardson, R. T. et al. Rank-based characterization of pollen assemblages collected by honey bees using a multi-locus metabarcoding approach. Appl. Plant Sci. https://doi.org/10.3732/apps.1500043 (2015).

Richardson, R. T. et al. Quantitative multi-locus metabarcoding and waggle dance interpretation reveal honey bee spring foraging patterns in Midwest agroecosystems. Mol. Ecol. 28, 686–697 (2018). This promising study shows the power of metagenomics and barcoding in providing quantitative data on the diversity and abundance of pollen collected by honeybees.

Bell, K. L. et al. Pollen DNA barcoding: current applications and future prospects. Genome 59, 629–640 (2016).

Pornon, A., Andalo, C., Burrus, M. & Escaravage, N. DNA metabarcoding data unveils invisible pollination networks. Sci. Rep. 7, 16828 (2017).

Gous, A., Swanevelder, D. Z. H., Eardley, C. D. & Willows-Munro, S. Plant-pollinator interactions over time: pollen metabarcoding from bees in a historic collection. Evol. Appl. 12, 187–197 (2019).

Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 15, 20 (2015).

Hawkins, J. et al. Using DNA metabarcoding to identify the floral composition of honey: a new tool for investigating honey bee foraging preferences. PLoS One 10, e0134735 (2015).

Bengtsson-Palme, J. et al. Metaxa2 Database Builder: enabling taxonomic identification from metagenomic or metabarcoding data using any genetic marker. Bioinforma. 34, 4027–4033 (2018).

Bell, K. L. et al. Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures. Mol. Ecol. 28, 431–455 (2019).

Hollingsworth, P. M., Li, D. Z., van der Bank, M. & Twyford, A. D. Telling plant species apart with DNA: from barcodes to genomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. https://doi.org/10.1098/rstb.2015.0338 (2016).

Garbian, Y., Maori, E., Kalev, H., Shafir, S. & Sela, I. Bidirectional transfer of RNAi between honey bee and varroa destructor: varroa gene silencing reduces varroa population. PLoS Pathog. 8, e1003035 (2012).

Li, W. et al. Silencing the honey bee (Apis mellifera) Naked Cuticle gene (nkd) improves host immune function and reduces nosema ceranae infections. Appl. Env. Microbiol. 82, 6779–6787 (2016). This study demonstrates the utility of RNAi in controlling pathogen and parasite populations in bees.

Yang, D. et al. Diverse factors affecting efficiency of RNAi in honey bee viruses. Front. Genet. 9, 384 (2018).

Taning, C. N. T., Van Eynde, B., Yu, N., Ma, S. & Smagghe, G. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. J. Insect Physiol. 98, 245–257 (2017).

Kohno, H., Suenami, S., Takeuchi, H., Sasaki, T. & Kubo, T. Production of knockout mutants by CRISPR/Cas9 in the European honeybee, Apis mellifera L. Zool. Sci. 33, 505–512 (2016).

Roth, A. et al. A genetic switch for worker nutrition-mediated traits in honeybees. PLoS Biol. 17, e3000171 (2019). This study demonstrates the use of gene editing with CRISPR–Cas9 to characterize the function of candidate genes.

Chaverra-Rodriguez, D. et al. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat. Commun. 9, 3008 (2018).

Mattila, H. R. & Seeley, T. D. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317, 362–364 (2007).

Meixner, M. D. et al. Honey bee genotypes and the environment. J. Apicult. Res. 53, 183–187 (2014). This study summarizes a series of honeybee genotype–environment studies conducted in Europe.

Danforth, B. N., Minckley, R. L., Neff, J. L. & Fawcett, F. The Solitary Bees: Biology, Evolution and Conservation. (Princeton University Press, 2019).

Beye, M., Hasselmann, M., Fondrk, M. K., Page, R. E. & Omholt, S. W. The gene csd is the primary signal for sexual development in the honey bee and encodes a new SR-type protein. Cell 114, 419–429 (2003).

Harpur, B. A., Sobhani, M. & Zayed, A. A review of the consequences of complementary sex determination and diploid male production on mating failures in the Hymenoptera. Entomol. Exp. Appl. 146, 156–164 (2013).

Zayed, A. Effective population size in Hymenoptera with complementary sex determination. Heredity 93, 627–630 (2004).

Zayed, A. & Packer, L. Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc. Natl Acad. Sci. USA 102, 10742–10746 (2005).

Lopez-Uribe, M. M., Jha, S. & Soro, A. A trait-based approach to predict population genetic structure in bees. Mol. Ecol. 28, 1919–1929 (2019).

Packer, L. et al. Conservation genetics of potentially endangered mutualisms: reduced levels of genetic variation in specialist versus generalist bees. Conserv. Biol. 19, 195–202 (2005).

Romiguier, J. et al. Population genomics of eusocial insects: the costs of a vertebrate-like effective population size. J. Evol. Biol. 27, 593–603 (2014).

Murray, E. A., Bossert, S. & Danforth, B. N. Pollinivory and the diversification dynamics of bees. Biol. Lett. https://doi.org/10.1098/rsbl.2018.0530 (2018).

Pinto, M. A. et al. Genetic integrity of the dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data. J. Apicult. Res. 53, 269–278 (2014).