Improving LiNi0.9Co0.08Mn0.02O2’s cyclic stability via abating mechanical damages

Energy Storage Materials - Tập 28 - Trang 1-9 - 2020
Zhongmin Ren1,2, Cai Shen1, Meng Liu1, Jian Liu1, Shengqi Zhang1, Gai Yang3, Liyuan Huai1, Xiaosong Liu3, Deyu Wang1,3,4, Hong Li3
1Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
2Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
3Tianmu Lake Institute of Advanced Energy Storage Technology, Liyang, 213300, China
4Key Laboratory of Optoelectronic Chemical Materials and Devices, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China

Tài liệu tham khảo

Goodenough, 2013, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438 Liu, 2019, Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy, 4, 180, 10.1038/s41560-019-0338-x Nitta, 2015, Li-ion battery materials: present and future, Mater. Today, 18, 252, 10.1016/j.mattod.2014.10.040 Liu, 2015, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries, Angew. Chem. Int. Ed., 54, 4440, 10.1002/anie.201409262 Jo, 2014, A new high power LiNi0.81Co0.1Al0.09O2 cathode material for lithium-ion batteries, Adv. Energy Mater., 4 Robert, 2015, Activation mechanism of LiNi0.80Co0.15Al0.05O2: surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X-ray diffraction analyses, Chem. Mater., 27, 526, 10.1021/cm503833b Tsai, 2018, Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries, Energy Environ. Sci., 11, 860, 10.1039/C8EE00001H Roland, 2017, Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries, J. Electrochem. Soc., 164, A1361, 10.1149/2.0021707jes Bi, 2015, Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery, J. Power Sources, 283, 211, 10.1016/j.jpowsour.2015.02.095 Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741 Kim, 2019, A method of increasing the energy density of layered Ni-rich Li[Ni1−2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2), J. Mater. Chem. A, 7, 2694, 10.1039/C8TA10438G Kim, 2018, Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries, Mater. Today, 23, 26, 10.1016/j.mattod.2018.12.004 Ryu, 2018, Capacity fading of Ni-rich Li[NixCoyMn1– x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?, Chem. Mater., 30, 1155, 10.1021/acs.chemmater.7b05269 Kim, 2017, Self-induced concentration gradient in nickel-rich cathodes by sacrificial polymeric bead clusters for high-energy lithium-ion batteries, Adv. Energy Mater., 7 Kim, 2018, A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries, Energy Environ. Sci., 11, 1449, 10.1039/C8EE00155C Mu, 2018, Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials, Nat. Commun., 9, 2810, 10.1038/s41467-018-05172-x Sun, 2017, Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries, Chem. Mater., 29, 8486, 10.1021/acs.chemmater.7b03268 Zou, 2018, Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials, Acs Energy Lett, 3, 2433, 10.1021/acsenergylett.8b01490 Faenza, 2018, Phase evolution and degradation modes of R3̅m LixNi1–y–zCoyAlzO2 electrodes cycled near complete delithiation, Chem. Mater., 30, 7545, 10.1021/acs.chemmater.8b02720 Li, 2015, Unravelling the impact of reaction paths on mechanical degradation of intercalation cathodes for lithium-ion batteries, J. Am. Chem. Soc., 137, 13732, 10.1021/jacs.5b06178 Park, 2018, Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-ion batteries, Adv. Energy Mater., 8, 1801202, 10.1002/aenm.201801202 Xie, 2019, A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries, Chem. Mater., 31, 938, 10.1021/acs.chemmater.8b03900 Xu, 2018, Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries, J. Mater. Chem. A, 6, 21859, 10.1039/C8TA06875E Yan, 2018, Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode, Nat. Commun., 9, 2437, 10.1038/s41467-018-04862-w Yan, 2018, Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries, Nat. Energy, 3, 600, 10.1038/s41560-018-0191-3 Yoon, 2017, Structural stability of LiNiO2 cycled above 4.2 V, Acs Energy Lett, 2, 1150, 10.1021/acsenergylett.7b00304 Ren, 2019, Constant dripping wears away a stone: Fatigue damage causing particles’ cracking, J. Power Sources, 416, 104, 10.1016/j.jpowsour.2019.01.084 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Yang, 2019, Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries, Adv. Funct. Mater., 29 Anisimov, 1997, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+Umethod, J. Phys. Condens. Matter, 9, 767, 10.1088/0953-8984/9/4/002 Tang, 2009, A grid-based Bader analysis algorithm without lattice bias, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/8/084204 Du, 2015, Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2 via Ti substitution with a cut-off potential of 4.5V, Ceram. Int., 41, 7133, 10.1016/j.ceramint.2015.02.026 Yoon, 2018, Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries, Chem. Mater., 30, 1808, 10.1021/acs.chemmater.8b00619 Hu, 2018, Mechanical and electrochemical properties of cubic and tetragonal Li x La 0.557 TiO 3 perovskite oxide electrolytes, Ceram. Int., 44, 1902, 10.1016/j.ceramint.2017.10.129 Jun, 2017, High-energy density core–shell structured Li[Ni0.95Co0.025Mn0.025]O2 cathode for lithium-ion batteries, Chem. Mater., 29, 5048, 10.1021/acs.chemmater.7b01425 Jung, 2014, Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries, Adv. Energy Mater., 4, 10.1002/aenm.201300787 Neudeck, 2019, Room temperature, liquid-phase Al2O3 surface coating approach for Ni-rich layered oxide cathode material, Chem. Commun., 55, 2174, 10.1039/C8CC09618J