Improving LiNi0.9Co0.08Mn0.02O2’s cyclic stability via abating mechanical damages
Tài liệu tham khảo
Goodenough, 2013, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438
Liu, 2019, Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy, 4, 180, 10.1038/s41560-019-0338-x
Nitta, 2015, Li-ion battery materials: present and future, Mater. Today, 18, 252, 10.1016/j.mattod.2014.10.040
Liu, 2015, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries, Angew. Chem. Int. Ed., 54, 4440, 10.1002/anie.201409262
Jo, 2014, A new high power LiNi0.81Co0.1Al0.09O2 cathode material for lithium-ion batteries, Adv. Energy Mater., 4
Robert, 2015, Activation mechanism of LiNi0.80Co0.15Al0.05O2: surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X-ray diffraction analyses, Chem. Mater., 27, 526, 10.1021/cm503833b
Tsai, 2018, Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries, Energy Environ. Sci., 11, 860, 10.1039/C8EE00001H
Roland, 2017, Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries, J. Electrochem. Soc., 164, A1361, 10.1149/2.0021707jes
Bi, 2015, Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery, J. Power Sources, 283, 211, 10.1016/j.jpowsour.2015.02.095
Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741
Kim, 2019, A method of increasing the energy density of layered Ni-rich Li[Ni1−2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2), J. Mater. Chem. A, 7, 2694, 10.1039/C8TA10438G
Kim, 2018, Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries, Mater. Today, 23, 26, 10.1016/j.mattod.2018.12.004
Ryu, 2018, Capacity fading of Ni-rich Li[NixCoyMn1– x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?, Chem. Mater., 30, 1155, 10.1021/acs.chemmater.7b05269
Kim, 2017, Self-induced concentration gradient in nickel-rich cathodes by sacrificial polymeric bead clusters for high-energy lithium-ion batteries, Adv. Energy Mater., 7
Kim, 2018, A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries, Energy Environ. Sci., 11, 1449, 10.1039/C8EE00155C
Mu, 2018, Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials, Nat. Commun., 9, 2810, 10.1038/s41467-018-05172-x
Sun, 2017, Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries, Chem. Mater., 29, 8486, 10.1021/acs.chemmater.7b03268
Zou, 2018, Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials, Acs Energy Lett, 3, 2433, 10.1021/acsenergylett.8b01490
Faenza, 2018, Phase evolution and degradation modes of R3̅m LixNi1–y–zCoyAlzO2 electrodes cycled near complete delithiation, Chem. Mater., 30, 7545, 10.1021/acs.chemmater.8b02720
Li, 2015, Unravelling the impact of reaction paths on mechanical degradation of intercalation cathodes for lithium-ion batteries, J. Am. Chem. Soc., 137, 13732, 10.1021/jacs.5b06178
Park, 2018, Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-ion batteries, Adv. Energy Mater., 8, 1801202, 10.1002/aenm.201801202
Xie, 2019, A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries, Chem. Mater., 31, 938, 10.1021/acs.chemmater.8b03900
Xu, 2018, Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries, J. Mater. Chem. A, 6, 21859, 10.1039/C8TA06875E
Yan, 2018, Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode, Nat. Commun., 9, 2437, 10.1038/s41467-018-04862-w
Yan, 2018, Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries, Nat. Energy, 3, 600, 10.1038/s41560-018-0191-3
Yoon, 2017, Structural stability of LiNiO2 cycled above 4.2 V, Acs Energy Lett, 2, 1150, 10.1021/acsenergylett.7b00304
Ren, 2019, Constant dripping wears away a stone: Fatigue damage causing particles’ cracking, J. Power Sources, 416, 104, 10.1016/j.jpowsour.2019.01.084
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Yang, 2019, Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries, Adv. Funct. Mater., 29
Anisimov, 1997, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+Umethod, J. Phys. Condens. Matter, 9, 767, 10.1088/0953-8984/9/4/002
Tang, 2009, A grid-based Bader analysis algorithm without lattice bias, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/8/084204
Du, 2015, Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2 via Ti substitution with a cut-off potential of 4.5V, Ceram. Int., 41, 7133, 10.1016/j.ceramint.2015.02.026
Yoon, 2018, Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries, Chem. Mater., 30, 1808, 10.1021/acs.chemmater.8b00619
Hu, 2018, Mechanical and electrochemical properties of cubic and tetragonal Li x La 0.557 TiO 3 perovskite oxide electrolytes, Ceram. Int., 44, 1902, 10.1016/j.ceramint.2017.10.129
Jun, 2017, High-energy density core–shell structured Li[Ni0.95Co0.025Mn0.025]O2 cathode for lithium-ion batteries, Chem. Mater., 29, 5048, 10.1021/acs.chemmater.7b01425
Jung, 2014, Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries, Adv. Energy Mater., 4, 10.1002/aenm.201300787
Neudeck, 2019, Room temperature, liquid-phase Al2O3 surface coating approach for Ni-rich layered oxide cathode material, Chem. Commun., 55, 2174, 10.1039/C8CC09618J