Improving Accuracy of SPH Method Using Voronoi Diagram
Tóm tắt
Từ khóa
Tài liệu tham khảo
Afshar MH, Shobeyri G (2010) Efficient simulation of free surface flows with discrete least-squares meshless method using a priori error estimator. Int J Comput Fluid Dyn 24(9):349–367
Afshar MH, Lashckarbolok M, Shobeyri G (2008) Collocated discrete least-squares (CDLSM) method for the solution of transient and steady-state hyperbolic problems. Int J Numer Methods Fluids 60(10):1055–1078
Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid–structure interaction by SPH. Comput Struct 85:879–889
Ataie-Ashtiani B, Farhadi L (2006) A stable moving-particle semi-implicit method for free surface flows. Fluid Dyn Res 38(4):241–256
Ataie-Ashtiani B, Shobeyri G (2008) Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. Int J Num Meth Fluids 56(2):209–232
Ataie-Ashtiani B, Shobeyri G, Farhadi L (2008) Modified incompressible SPH method for simulating free surface problems. Fluid Dyn Res 40(9):637–661
Atluri SN, Kim HG, Cho JY (1999) A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Comput Mech 24:348–372
Barcarolo DA, Touzé DL, Oger G, De Vuyst F (2014) Voronoi-SPH: on the analysis of a hybrid finite volumes—smoothed particle hydrodynamics method, 9th international SPHERIC workshop Paris, France
Bonet J, Lok T (2000) Correction and stabilization of smoothed particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47:1189–1214
Chiaki G, Yoshida N (2015) Particle splitting in smoothed particle hydrodynamics based on Voronoi Diagram. Mon Not R Astron Soc 451(4):3955–3963
Dilts G (2000) Moving least squares particle hydrodynamics II. Conservation and boundaries. Int J Numer Methods Eng 48:1503–1524
Ghaffari MA, Xiao S (2016) Smoothed particle hydrodynamics with stress points and centroid Voronoi tessellation (CVT) topology optimization. Int J Comput Methods 13(6):1650031
Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non spherical stars. Mon Not R Astron Soc 181:375–389
Gomez-Gesteria M, Dalrymple R (2004) Using a three-dimensional smoothed particle hydrodynamics method forwave impact on a tall structure. J Waterw Port Coast Eng 130(2):63–69
Heb S, Springel V (2010) Particle hydrodynamics with tessellation techniques. Mon Not R Astron Soc 406(4):2289–2311
Liu L, Chua LP, Ghista DN (2006) Element-free Galerkin method for static and dynamic analysis of spatial shell structures. J Sound Vibr 295(1–2):388–406
Morris JP (1996) Analysis of SPH with applications, analysis of SPH with applications, Ph.D. Thesis, Monash University, Australia
Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: Some recent improvements and applications. Comput Methods Appl Mech Eng 139:375–408
Shao SD, Gotoh H (2005) Turbulence particle models for tracking free surfaces. J Hydraul Res 43(3):276–289
Shao SD, Lo EYM (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787–800
Shobeyri G, Afshar MH (2010) Simulating free surface problems using discrete least-squares meshless method. Comput Fluids 39:461–470
Shobeyri G, Afshar MH (2012) Adaptive simulation of free surface flows with discrete least squares meshless (DLSM) method using a posteriori error estimator. Eng Comput 29(8):794–813
