Improving Accuracy of SPH Method Using Voronoi Diagram

Gholamreza Shobeyri1, Reza Rasti Ardakani2
1Department of Civil Engineering, Alaodoleh Semnani Institute of Higher Education (ASIHE), Garmsar, Iran
2Shahid Beheshti University, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Afshar MH, Shobeyri G (2010) Efficient simulation of free surface flows with discrete least-squares meshless method using a priori error estimator. Int J Comput Fluid Dyn 24(9):349–367

Afshar MH, Lashckarbolok M, Shobeyri G (2008) Collocated discrete least-squares (CDLSM) method for the solution of transient and steady-state hyperbolic problems. Int J Numer Methods Fluids 60(10):1055–1078

Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid–structure interaction by SPH. Comput Struct 85:879–889

Ataie-Ashtiani B, Farhadi L (2006) A stable moving-particle semi-implicit method for free surface flows. Fluid Dyn Res 38(4):241–256

Ataie-Ashtiani B, Shobeyri G (2008) Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. Int J Num Meth Fluids 56(2):209–232

Ataie-Ashtiani B, Shobeyri G, Farhadi L (2008) Modified incompressible SPH method for simulating free surface problems. Fluid Dyn Res 40(9):637–661

Atluri SN, Kim HG, Cho JY (1999) A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Comput Mech 24:348–372

Barcarolo DA, Touzé DL, Oger G, De Vuyst F (2014) Voronoi-SPH: on the analysis of a hybrid finite volumes—smoothed particle hydrodynamics method, 9th international SPHERIC workshop Paris, France

Bonet J, Lok T (2000) Correction and stabilization of smoothed particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47:1189–1214

Chiaki G, Yoshida N (2015) Particle splitting in smoothed particle hydrodynamics based on Voronoi Diagram. Mon Not R Astron Soc 451(4):3955–3963

Dilts G (2000) Moving least squares particle hydrodynamics II. Conservation and boundaries. Int J Numer Methods Eng 48:1503–1524

Ghaffari MA, Xiao S (2016) Smoothed particle hydrodynamics with stress points and centroid Voronoi tessellation (CVT) topology optimization. Int J Comput Methods 13(6):1650031

Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non spherical stars. Mon Not R Astron Soc 181:375–389

Gomez-Gesteria M, Dalrymple R (2004) Using a three-dimensional smoothed particle hydrodynamics method forwave impact on a tall structure. J Waterw Port Coast Eng 130(2):63–69

Heb S, Springel V (2010) Particle hydrodynamics with tessellation techniques. Mon Not R Astron Soc 406(4):2289–2311

Liu GR (2002) Mesh free methods: moving beyond the finite element method. CRC Press, p 1420040588

Liu L, Chua LP, Ghista DN (2006) Element-free Galerkin method for static and dynamic analysis of spatial shell structures. J Sound Vibr 295(1–2):388–406

Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406

Morris JP (1996) Analysis of SPH with applications, analysis of SPH with applications, Ph.D. Thesis, Monash University, Australia

Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: Some recent improvements and applications. Comput Methods Appl Mech Eng 139:375–408

Shao SD, Gotoh H (2005) Turbulence particle models for tracking free surfaces. J Hydraul Res 43(3):276–289

Shao SD, Lo EYM (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787–800

Shobeyri G, Afshar MH (2010) Simulating free surface problems using discrete least-squares meshless method. Comput Fluids 39:461–470

Shobeyri G, Afshar MH (2012) Adaptive simulation of free surface flows with discrete least squares meshless (DLSM) method using a posteriori error estimator. Eng Comput 29(8):794–813

Shobeyri G (2017) A new meshless approach in simulating free surface flows using continuous MLS shape functions and Voronoi Diagram, submitted for Engineering Computations