Cải thiện tính chất cơ học và khả năng chống cháy của các vật liệu composite epoxy/sợi thủy tinh chứa graphene sinh học sử dụng phương pháp ép nóng

Polymer Bulletin - Tập 79 - Trang 6289-6307 - 2021
V. Kavimani1, P. M. Gopal1, K. R. Sumesh2,3, R. Elanchezhian4
1Center for Material Science, Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, India
2Department of Materials Engineering, Czech Technical University in Prague, Prague, Czech Republic
3Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
4Department of Biomedical Sciences, Alagappa University, Karaikudi, India

Tóm tắt

Việc khử sinh học các vật liệu composite là phương pháp hiện đại giúp các nhà nghiên cứu tránh tiếp xúc với các hóa chất độc hại trong quá trình khử. Trong nghiên cứu này, quá trình khử xanh graphene oxide bằng cách sử dụng lá cây Abutilon indicum (tên Tamil: Thuthi) trích xuất từ nhiều dung môi khác nhau được sử dụng làm vật liệu bổ sung xanh (0,3, 0,6 và 1 wt.%) trong composite epoxy sợi thủy tinh. Quá trình ép nén đã được áp dụng để chế tạo composite có polymer matrix kết hợp với graphene oxide đã được khử sinh học (BGO). Các phép thử về độ bền kéo, độ uốn, độ dai, thử nghiệm va đập và phân tích hình thái bề mặt vỡ đã được thực hiện trên composite phát triển. Tính chất chống cháy được nghiên cứu dựa trên tiêu chuẩn UL94. Kết quả nghiên cứu cho thấy Abutilon indicum hoạt động như một tác nhân khử tốt hơn để khử graphene oxide. Kết quả XRD, FTIR cho thấy sự biến dạng thích hợp của bình graphite. Việc thêm BGO vào polymer matrix cải thiện độ bền kéo, độ uốn và độ bền va đập của vật liệu ma trận lên tới 28%, 55% và 80%. Ở đây, việc bổ sung 0,6 wt.% BGO cho thấy độ bền vỡ và độ bền uốn tốt hơn, trong khi việc gia tăng thêm BGO lại có ảnh hưởng tiêu cực tới độ bền. Sự xuất hiện của thất bại tách lớp được ghi nhận trong hình thái bề mặt vỡ.

Từ khóa

#khử sinh học #graphene oxide #vật liệu composite #tính chất cơ học #khả năng chống cháy #Abutilon indicum #ép nén

Tài liệu tham khảo

Sumesh KR, Kavimani V, Rajeshkumar G, Indran S, Saikrishnan G (2021) Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-021-01196-6 Sumesh KR, Kavimani V, Rajeshkumar G, Indran S, Khan A (2020) Mechanical, water absorption and wear characteristics of novel polymeric composites: impact of hybrid natural fibers and oil cake filler addition. J Ind Text. https://doi.org/10.1177/1528083720971344 Han S, Meng Q, Qiu Z, Osman A, Cai R, Yu Y, Liu T, Araby S (2019) Mechanical, toughness and thermal properties of 2D material-reinforced epoxy composites. Polym (Guildf) 184:121884 Sumesh KR, Kanthavel K, Kavimani V (2020) Peanut oil cake-derived cellulose fiber: extraction, application of mechanical and thermal properties in pineapple/flax natural fiber composites. Int J Biol Macromol 150:775–785. https://doi.org/10.1016/j.ijbiomac.2020.02.118 Gulati K, Lal S, Kumar S, Arora S (2020) Effect of gamma irradiation on thermal, mechanical and water absorption behavior of LLDPE hybrid composites reinforced with date pit (Phoenix dactylifera) and glass fiber. Polym Bull. https://doi.org/10.1007/s00289-020-03477-w Karsli NG, Yilmaz T, Gul O (2018) Effects of coupling agent addition on the adhesive wear, frictional and thermal properties of glass fiber-reinforced polyamide 6, 6 composites. Polym Bull 75:4429–4444 Chen C-H, Jian J-Y, Yen F-S (2020) Morphology, thermal, and mechanical properties of κ-aluminum oxide/CTBN/epoxy nanocomposites. Polym Bull 78:1–14 Kudus MHA, Zakaria MR, Othman MBH, Akil HM, Javed F (2020) Improvement of thermal conductivity and dielectric constant of graphene-filled epoxy nanocomposites using colloidal polymerization approach. Polym Bull 77:2385–2404 Colak OU, Uzunsoy D, Bahlouli N, Francart C (2020) Experimental investigation of oligo cyclic compression behavior of pure epoxy and graphene-epoxy nanocomposites. Polym Bull. https://doi.org/10.1007/s00289-020-03453-4 Dewangan R, Asthana A, Singh AK, Carabineiro SAC (2020) Control of surface functionalization of graphene-metal oxide polymer nanocomposites prepared by a hydrothermal method. Polym Bull. https://doi.org/10.1007/s00289-020-03342-w Li S, Zhang J, Liu M, Wang R, Wu L (2020) Influence of polyethyleneimine functionalized graphene on tribological behavior of epoxy composite. Polym Bull. https://doi.org/10.1007/s00289-020-03439-2 Kavimani V, Stalin B, Gopal PM, Ravichandran M, Karthick A, Bharani M (2021) Application of r-GO-MMT hybrid nanofillers for improving strength and flame retardancy of epoxy/glass fibre composites. Adv Polym Technol 2021:1–9 Kavimani V, Prakash KS, Thankachan T (2019) Experimental investigations on wear and friction behaviour of SiC@r-GO reinforced Mg matrix composites produced through solvent-based powder metallurgy. Compos Part B Eng 162:508–521. https://doi.org/10.1016/j.compositesb.2019.01.009 Kavimani V, Soorya Prakash K, Thankachan T, Udayakumar R (2020) Synergistic improvement of epoxy derived polymer composites reinforced with graphene oxide (GO) plus titanium di oxide(TiO2). Compos Part B Eng 191:107911. https://doi.org/10.1016/j.compositesb.2020.107911 Kamar NT, Hossain MM, Khomenko A, Haq M, Drzal LT, Loos A (2015) Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Compos Part A Appl Sci Manuf 70:82–92 Prusty RK, Ghosh SK, Rathore DK, Ray BC (2017) Reinforcement effect of graphene oxide in glass fibre/epoxy composites at in-situ elevated temperature environments: an emphasis on graphene oxide content. Compos Part A Appl Sci Manuf 95:40–53 Kunrath K, Kerche EF, Rezende MC, Amico SC (2019) Mechanical, electrical, and electromagnetic properties of hybrid graphene/glass fiber/epoxy composite. Polym Polym Compos 27:262–267 Liu S, Fang Z, Yan H, Chevali VS, Wang H (2016) Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos Part A Appl Sci Manuf 89:26–32 Yu B, Shi Y, Yuan B, Qiu S, Xing W, Hu W, Song L, Lo S, Hu Y (2015) Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J Mater Chem A 3:8034–8044 Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon N Y 50:5331–5339 Zhang D, Liu X, Wang X (2011) Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties. J Inorg Biochem 105:1181–1186 Bhattacharya G, Sas S, Wadhwa S, Mathur A, McLaughlin J, Roy SS (2017) Aloe vera assisted facile green synthesis of reduced graphene oxide for electrochemical and dye removal applications. RSC Adv 7:26680–26688 Mahata S, Sahu A, Shukla P, Rai A, Singh M, Rai VK (2018) The novel and efficient reduction of graphene oxide using ocimum sanctum L. leaf extract as an alternative renewable bio-resource. New J Chem 42:19945–19952 Mohanta YK, Biswas K, Bandyopadhyay J, Tamang A, De D, Mohanta D, Panda SK, Jayabalan R, Mohanta TK, Bastia AK (2018) Abutilon indicum (L.) sweet leaf extracts assisted bio-inspired synthesis of electronically charged silver nano-particles with potential antimicrobial, antioxidant and cytotoxic properties. Mater Focus 7:94–100 K V, Prakash S, Rajesh R, Rammasamy D, Selvaraj NB, Yang T, Prabakaran B, Jothi S (2017) Electrodeposition of r-GO/SiC nano-composites on magnesium and its corrosion behavior in aqueous electrolyte. Appl Surf Sci 424:63–71. https://doi.org/10.1016/j.apsusc.2017.02.082 Biradar SR, Rachetti BD (2013) Extraction of some secondary metabolites & thin layer chromatography from different parts of centella asiatica L.(URB). Am J Life Sci 1:243–247 Yasmin S, Kashmiri MA, Asghar MN, Ahmad M, Mohy-ud-Din A (2010) Antioxidant potential and radical scavenging effects of various extracts from abutilon indicum and abutilon muticum. Pharm Biol 48:282–289 Khan SA, Noreen F, Kanwal S, Iqbal A, Hussain G (2018) Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of abutilon indicum, Clerodendrum infortunatum, clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater Sci Eng C 82:46–59 Prathap M, Alagesan A, Kumari BDR (2014) Anti-bacterial activities of silver nanoparticles synthesized from plant leaf extract of abutilon indicum (L.) sweet. J Nanostructure Chem 4:106 Bahrami A, Kazeminezhad I, Abdi Y (2019) Pt-Ni/rGO counter electrode: electrocatalytic activity for dye-sensitized solar cell. Superlattices Microstruct 125:125–137 Qiao X, Liao S, You C, Chen R (2015) Phosphorus and nitrogen dual doped and simultaneously reduced graphene oxide with high surface area as efficient metal-free electrocatalyst for oxygen reduction. Catalysts 5:981–991 Kumar A, Sadanandhan AM, Jain SL (2019) Silver doped reduced graphene oxide as a promising plasmonic photocatalyst for oxidative coupling of benzylamines under visible light irradiation. New J Chem 43:9116–9122 He D, Peng Z, Gong W, Luo Y, Zhao P, Kong L (2015) Mechanism of a green graphene oxide reduction with reusable potassium carbonate. RSC Adv 5:11966–11972 Habte AT, Ayele DW (2019) Synthesis and characterization of reduced graphene oxide (rGO) started from graphene oxide (GO) using the tour method with different parameters. Adv Mater Sci Eng 2019:1–9 Aswathnarayan MS, Muniraju M, Reddappa HN, Rudresh BM (2020) Synergistic effect of nano graphene on the mechanical behaviour of glass-epoxy polymer composites. Mater Today Proc 20:177–184 Verma D, Gope PC, Shandilya A, Gupta A (2014) Mechanical-thermal-electrical and morphological properties of graphene reinforced polymer composites: a review. Trans Indian Inst Met 67:803–816 Srivastava AK, Gupta V, Yerramalli CS, Singh A (2019) Flexural strength enhancement in carbon-fiber epoxy composites through graphene nano-platelets coating on fibers. Compos Part B Eng 179:107539 Hung P, Lau K, Fox B, Hameed N, Jia B, Lee JH (2019) Effect of graphene oxide concentration on the flexural properties of CFRP at low temperature. Carbon N Y 152:556–564 Gangineni PK, Yandrapu S, Ghosh SK, Anand A, Prusty RK, Ray BC (2019) Mechanical behavior of graphene decorated carbon fiber reinforced polymer composites: an assessment of the influence of functional groups. Compos Part A Appl Sci Manuf 122:36–44 Toorchi D, Tohidlou E, Khosravi H (2020) Enhanced flexural and tribological properties of basalt fiber-epoxy composite using nano-zirconia/graphene oxide hybrid system. J Ind Text. https://doi.org/10.1177/1528083720920573 Keshavarz R, Aghamohammadi H, Eslami-Farsani R (2020) The effect of graphene nanoplatelets on the flexural properties of fiber metal laminates under marine environmental conditions. Int J Adhes Adhes 103:102709 Du S-S, Li F, Xiao H-M, Li Y-Q, Hu N, Fu S-Y (2016) Tensile and flexural properties of graphene oxide coated-short glass fiber reinforced polyethersulfone composites. Compos Part B Eng 99:407–415 Anand A, Ghosh SK, Fulmali AO, Prusty RK (2021) Enhanced barrier, mechanical and viscoelastic properties of graphene oxide embedded glass fibre/epoxy composite for marine applications. Constr Build Mater 268:121784 Jena A, Prusty RK, Ray BC (2020) Mechanical and thermal behaviour of multi-layer graphene and nanosilica reinforced glass Fiber/Epoxy composites. Mater Today Proc 33:5184–5189 Chaharmahali M, Hamzeh Y, Ebrahimi G, Ashori A, Ghasemi I (2014) Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polym Bull 71:337–349 Abdullah SI, Ansari MNM (2015) Mechanical properties of graphene oxide (GO)/epoxy composites. Hbrc J 11:151–156 Wang X, Song L, Yang H, Lu H, Hu Y (2011) Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly (butylene succinate) composites. Ind Eng Chem Res 50:5376–5383 Yuan B, Fan A, Yang M, Chen X, Hu Y, Bao C, Jiang S, Niu Y, Zhang Y, He S (2017) The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym Degrad Stab 143:42–56 Chen W, Liu Y, Liu P, Xu C, Liu Y, Wang Q (2017) The preparation and application of a graphene-based hybrid flame retardant containing a long-chain phosphaphenanthrene. Sci Rep 7:1–12