Improvement of solubility of sparingly water-soluble drug triggered by metal-organic framework
Tài liệu tham khảo
Kitagawa, 2004, Functional porous coordination polymers, Angew Chem. Int. Ed. Engl., 43, 2334, 10.1002/anie.200300610
Yaghi, 1995, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, J. Am. Chem. Soc., 117, 10401, 10.1021/ja00146a033
Pan, 2006, Separation of hydrocarbons with a microporous metal-organic framework, Angew Chem. Int. Ed. Engl., 45, 616, 10.1002/anie.200503503
Shimomura, 2010, Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer, Nat. Chem., 2, 633, 10.1038/nchem.684
Millward, 2005, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127, 17998, 10.1021/ja0570032
Hu, 2010, Hydrogen storage in metal-organic frameworks, Adv. Mater., 22, E117, 10.1002/adma.200902096
Kreno, 2012, Metal-organic framework materials as chemical sensors, Chem. Rev., 112, 1105, 10.1021/cr200324t
Zhang, 2014, Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds, J. Am. Chem. Soc., 136, 7241, 10.1021/ja502643p
Lee, 2009, Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450, 10.1039/b807080f
Rojas, 2019, Metal-organic frameworks: a novel platform for combined advanced therapies, Coord. Chem. Rev., 388, 202, 10.1016/j.ccr.2019.02.032
Cai, 2015, Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging, Small, 11, 4806, 10.1002/smll.201500802
Horcajada, 2006, Metal-organic frameworks as efficient materials for drug delivery, Angew Chem. Int. Ed. Engl., 45, 5974, 10.1002/anie.200601878
Charnay, 2004, Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property, Eur. J. Pharm. Biopharm., 57, 533, 10.1016/j.ejpb.2003.12.007
Deng, 2012, Large-pore apertures in a series of metal-organic frameworks, Science, 336, 1018, 10.1126/science.1220131
Ke, 2011, Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery, J. Mater. Chem., 21, 3843, 10.1039/c0jm01770a
Sun, 2012, Zeolitic Imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle, Dalton Trans., 41, 6906, 10.1039/c2dt30357d
Liu, 2015, A combined experimental and computational study of novel nanocage-based metal-organic frameworks for drug delivery, Dalton Trans., 44, 19370, 10.1039/C5DT02171E
Kotzabasaki, 2017, Multiscale simulations reveal IRMOF-74-III as a potent drug carrier for gemcitabine delivery, J. Mater. Chem. B, 5, 3277, 10.1039/C7TB00220C
Gomar, 2017, Adsorption of 5-fluorouracil, hydroxyurea and mercaptopurine drugs on zeolitic imidazolate frameworks (ZIF-7, ZIF-8 and ZIF-9), Microporous Mesoporous Mater., 252, 167, 10.1016/j.micromeso.2017.06.010
Bernini, 2014, Screening of bio-compatible metal-organic frameworks as potential drug carriers using Monte Carlo simulations, J. Mater. Chem. B, 2, 766, 10.1039/C3TB21328E
Sun, 2019, Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: batch experiment and DFT calculation, Chem. Eng. J., 360, 645, 10.1016/j.cej.2018.12.021
Hu, 2014, A low cytotoxic cationic metal-organic framework carrier for controllable drug release, J. Med. Chem., 57, 5679, 10.1021/jm5004107
Ma, 2017, Cytotoxicity of a metal–organic framework: drug delivery, Inorg. Chem. Commun., 77, 68, 10.1016/j.inoche.2017.01.004
Vasconcelos, 2012, Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8, RSC Adv., 2, 9437, 10.1039/c2ra21087h
Tamames-Tabar, 2014, Cytotoxicity of nanoscaled metal-organic frameworks, J. Mater. Chem. B, 2, 262, 10.1039/C3TB20832J
Amidon, 1995, A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res. (N. Y.), 12, 413, 10.1023/A:1016212804288
Almeida e Sousa, 2015, Assessment of the amorphous "solubility" of a group of diverse drugs using new experimental and theoretical approaches, Mol. Pharm., 12, 484, 10.1021/mp500571m
Mosquera-Giraldo, 2015, Glass-liquid phase separation in highly supersaturated aqueous solutions of telaprevir, Mol. Pharm., 12, 496, 10.1021/mp500573z
Noyes, 1897, The rate of solution of solid substances in their own solutions, J. Am. Chem. Soc., 19, 930, 10.1021/ja02086a003
Müller, 1998, Nanosuspensions for the formulation of poorly soluble drugs, Int. J. Pharm., 160, 229, 10.1016/S0378-5173(97)00311-6
Van Eerdenbrugh, 2008, Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products, Int. J. Pharm., 364, 64, 10.1016/j.ijpharm.2008.07.023
He, 2019, Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan, Acta Pharm. Sin. B, 9, 97, 10.1016/j.apsb.2018.09.003
Suresh, 2019, Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal–organic framework (MOF), Angew. Chem., 131, 16946, 10.1002/ange.201907652
He, 2014, Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution, Microporous Mesoporous Mater., 184, 55, 10.1016/j.micromeso.2013.10.003
Surwase, 2013, Indomethacin: new polymorphs of an old drug, Mol. Pharm., 10, 4472, 10.1021/mp400299a
Yalkowsky, 1992
Colombo, 2018, Preparation of amorphous indomethacin nanoparticles by aqueous wet bead milling and in situ measurement of their increased saturation solubility, Eur. J. Pharm. Biopharm., 125, 159, 10.1016/j.ejpb.2018.01.013