Improvement of solubility of sparingly water-soluble drug triggered by metal-organic framework

Journal of Drug Delivery Science and Technology - Tập 63 - Trang 102490 - 2021
Shuji Ohsaki1, Hiroki Satsuma1, Hideya Nakamura1, Satoru Watano1
1Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

Tài liệu tham khảo

Kitagawa, 2004, Functional porous coordination polymers, Angew Chem. Int. Ed. Engl., 43, 2334, 10.1002/anie.200300610 Yaghi, 1995, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, J. Am. Chem. Soc., 117, 10401, 10.1021/ja00146a033 Pan, 2006, Separation of hydrocarbons with a microporous metal-organic framework, Angew Chem. Int. Ed. Engl., 45, 616, 10.1002/anie.200503503 Shimomura, 2010, Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer, Nat. Chem., 2, 633, 10.1038/nchem.684 Millward, 2005, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127, 17998, 10.1021/ja0570032 Hu, 2010, Hydrogen storage in metal-organic frameworks, Adv. Mater., 22, E117, 10.1002/adma.200902096 Kreno, 2012, Metal-organic framework materials as chemical sensors, Chem. Rev., 112, 1105, 10.1021/cr200324t Zhang, 2014, Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds, J. Am. Chem. Soc., 136, 7241, 10.1021/ja502643p Lee, 2009, Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450, 10.1039/b807080f Rojas, 2019, Metal-organic frameworks: a novel platform for combined advanced therapies, Coord. Chem. Rev., 388, 202, 10.1016/j.ccr.2019.02.032 Cai, 2015, Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging, Small, 11, 4806, 10.1002/smll.201500802 Horcajada, 2006, Metal-organic frameworks as efficient materials for drug delivery, Angew Chem. Int. Ed. Engl., 45, 5974, 10.1002/anie.200601878 Charnay, 2004, Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property, Eur. J. Pharm. Biopharm., 57, 533, 10.1016/j.ejpb.2003.12.007 Deng, 2012, Large-pore apertures in a series of metal-organic frameworks, Science, 336, 1018, 10.1126/science.1220131 Ke, 2011, Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery, J. Mater. Chem., 21, 3843, 10.1039/c0jm01770a Sun, 2012, Zeolitic Imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle, Dalton Trans., 41, 6906, 10.1039/c2dt30357d Liu, 2015, A combined experimental and computational study of novel nanocage-based metal-organic frameworks for drug delivery, Dalton Trans., 44, 19370, 10.1039/C5DT02171E Kotzabasaki, 2017, Multiscale simulations reveal IRMOF-74-III as a potent drug carrier for gemcitabine delivery, J. Mater. Chem. B, 5, 3277, 10.1039/C7TB00220C Gomar, 2017, Adsorption of 5-fluorouracil, hydroxyurea and mercaptopurine drugs on zeolitic imidazolate frameworks (ZIF-7, ZIF-8 and ZIF-9), Microporous Mesoporous Mater., 252, 167, 10.1016/j.micromeso.2017.06.010 Bernini, 2014, Screening of bio-compatible metal-organic frameworks as potential drug carriers using Monte Carlo simulations, J. Mater. Chem. B, 2, 766, 10.1039/C3TB21328E Sun, 2019, Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: batch experiment and DFT calculation, Chem. Eng. J., 360, 645, 10.1016/j.cej.2018.12.021 Hu, 2014, A low cytotoxic cationic metal-organic framework carrier for controllable drug release, J. Med. Chem., 57, 5679, 10.1021/jm5004107 Ma, 2017, Cytotoxicity of a metal–organic framework: drug delivery, Inorg. Chem. Commun., 77, 68, 10.1016/j.inoche.2017.01.004 Vasconcelos, 2012, Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8, RSC Adv., 2, 9437, 10.1039/c2ra21087h Tamames-Tabar, 2014, Cytotoxicity of nanoscaled metal-organic frameworks, J. Mater. Chem. B, 2, 262, 10.1039/C3TB20832J Amidon, 1995, A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res. (N. Y.), 12, 413, 10.1023/A:1016212804288 Almeida e Sousa, 2015, Assessment of the amorphous "solubility" of a group of diverse drugs using new experimental and theoretical approaches, Mol. Pharm., 12, 484, 10.1021/mp500571m Mosquera-Giraldo, 2015, Glass-liquid phase separation in highly supersaturated aqueous solutions of telaprevir, Mol. Pharm., 12, 496, 10.1021/mp500573z Noyes, 1897, The rate of solution of solid substances in their own solutions, J. Am. Chem. Soc., 19, 930, 10.1021/ja02086a003 Müller, 1998, Nanosuspensions for the formulation of poorly soluble drugs, Int. J. Pharm., 160, 229, 10.1016/S0378-5173(97)00311-6 Van Eerdenbrugh, 2008, Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products, Int. J. Pharm., 364, 64, 10.1016/j.ijpharm.2008.07.023 He, 2019, Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan, Acta Pharm. Sin. B, 9, 97, 10.1016/j.apsb.2018.09.003 Suresh, 2019, Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal–organic framework (MOF), Angew. Chem., 131, 16946, 10.1002/ange.201907652 He, 2014, Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution, Microporous Mesoporous Mater., 184, 55, 10.1016/j.micromeso.2013.10.003 Surwase, 2013, Indomethacin: new polymorphs of an old drug, Mol. Pharm., 10, 4472, 10.1021/mp400299a Yalkowsky, 1992 Colombo, 2018, Preparation of amorphous indomethacin nanoparticles by aqueous wet bead milling and in situ measurement of their increased saturation solubility, Eur. J. Pharm. Biopharm., 125, 159, 10.1016/j.ejpb.2018.01.013