Improvement of small seed for big nutritional feed
Tóm tắt
Exploding global population, rapid urbanization, salinization of soils, decreasing arable land availability, groundwater resources, and dynamic climatic conditions pose impending damage to our food security by reducing the grain quality and quantity. This issue is further compounded in arid and semi-arid regions due to the shortage of irrigation water and erratic rainfalls. Millets are gluten (a family of proteins)-free and cultivated all over the globe for human consumption, fuel, feed, and fodder. They provide nutritional security for the under- and malnourished. With the deployment of strategies like foliar spray, traditional/marker-assisted breeding, identification of candidate genes for the translocation of important minerals, and genome-editing technologies, it is now tenable to biofortify important millets. Since the bioavailability of iron and zinc has been proven in human trials, the challenge is to make such grains accessible. This review encompasses nutritional benefits, progress made, challenges being encountered, and prospects of enriching millet crops with essential minerals.
Tài liệu tham khảo
AbdelRahman SM, Babiker EE, El Tinay AH (2005) Effect of fermentation on antinutritional factors and HCl extractability of minerals of pearl millet cultivars. J Food Technol 3:516–522
Abrahamson S, Bender MA, Conger AD et al (1973) Uniformity of radiation-induced mutation rates among different species. Nature 245:460–462. https://doi.org/10.1038/245460a0
Abrouk M, Ahmed HI, Cubry P et al (2020) Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nat Commun 11:4488. https://doi.org/10.1038/s41467-020-18329-4
Adoukonou-Sagbadja H, Wagner C, Dansi A et al (2007) Genetic diversity and population differentiation of traditional fonio millet (Digitaria spp.) landraces from different agro-ecological zones of from West-Africa. Theor Appl Genet 115:917–931. https://doi.org/10.1007/s00122-007-0618-x
Agricultural Statistics, GOI (2014) Pearl millet. In: Agricultural statistics at a glance—2014, Government of India. Oxford University Press, New Delhi, India, pp 85–86
Ajithkumar IP, Panneerselvam R (2014) ROS scavenging system, osmotic maintenance, pigment and growth status of Panicum sumatrense Roth. under drought stress. Cell Biochem Biophys 68:587–595. https://doi.org/10.1007/s12013-013-9746-x
Akansha CS, Chauhan ES (2020) Teff millet: nutritional, phytochemical and antioxidant potential. Int J Pharmaceut Sci Res 11:6005–6009. https://doi.org/10.13040/IJPSR.0975-8232.11(12).6005-09
Allan CB, Lacourciere GM, Stadtman TC (1999) Responsiveness of selenoproteins to dietary selenium. Ann Rev Nutr 19:1–16. https://doi.org/10.1146/annurev.nutr.19.1.1
Anbukkani P, Balaji SJ, Nityashree ML (2017) Production and consumption of minor millets in India—a structural break analysis. Agric Res New Ser 38:1–8
Bailey RL, West KP Jr, Black RE (2015) The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66:22–33. https://doi.org/10.1159/000371618
Baltensperger DD (1996) Foxtail and proso millet. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 182–190
Barikmo I, Ouattara F, Oshaug A (2007) Differences in micronutrients content found in cereals from various parts of Mali. J Food Compos Anal 20:681–687. https://doi.org/10.1016/j.jfca.2007.04.002
Bennetzen JL, Schmutz J, Wang H et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561. https://doi.org/10.1038/nbt.2196
Bhat BV, Tonapi VA, Rao BD et al (2018) Production and utilization of millets in India. In: Santra DK, Johnson JJ (eds) International millet symposium on 3rd international symposium on broomcorn millet (3rd ISBM), pp 24–36
Bisht MS, Mukai Y (2001) Genomic in situ hybridization identifies genome donor of finger millet (Eleusine coracana). Theor Appl Genet 102:825–832. https://doi.org/10.1007/s001220000497
Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:20. https://doi.org/10.2135/cropsci2009.09.0531
Bouis HE, Hotz C, McClafferty B et al (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S40. https://doi.org/10.1177/15648265110321S105
Brutnell TP, Bennetzen JL, Vogel JP (2015) Brachypodium distachyon and Setaria viridis: model genetic systems for the grasses. Annu Rev Plant Biol 66:465–485. https://doi.org/10.1146/annurev-arplant-042811-105528
Budak H, Kaya SB, Cagirici HB (2020) Long non-coding RNA in plants in the era of reference sequences. Front Plant Sci 11:276. https://doi.org/10.3389/fpls.2020.00276
Burton GW (1940) A cytological study of some species in the genus Paspalum. J Agric Res 60:193–198
Cannarozzi GM, Wuthrich SP, Esfeld K et al (2014) Genome and transcriptome sequencing identified breeding targets in the orphan crop tef (Ergrostis tef). BMC Genom 15:581. https://doi.org/10.1186/1471-2164-15-581
Chandel G, Kumar M, Dubey M et al (2014) Nutritional properties of minor millets: neglected cereals with potentials to combat malnutrition. Curr Sci 107:1109–1111
Chasapis CT, Loutsidou AC, Spiliopoulou CA et al (2012) Zinc and human health: an update. Arch Toxicol 86:521–553. https://doi.org/10.1007/s00204-011-0775-1
Cheng A, Mayes S, Dalle G et al (2017) Diversifying crops for food and nutrition security—a case of teff. Biol Rev Camb Philos Soc 92:188–198. https://doi.org/10.1111/brv.12225
Cochrane L, Bekele YW (2018) Average crop yield (2001–2017) in Ethiopia: trends at national, regional and zonal levels. Data Brief 16:1025. https://doi.org/10.1016/j.dib.2017.12.039
Curie C, Cassin G, Couch D et al (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-liketransporters. Ann Bot 103:1–11. https://doi.org/10.1093/aob/mcn207
D’Amato R, Regni L, Falcinelli B et al (2020) Current knowledge on selenium biofortification to improve the nutraceutical profile of food: a comprehensive review. J Agric Food Chem 68:4075–4097. https://doi.org/10.1021/acs.jafc.0c00172
Das S, Khound R, Santra M et al (2019) Beyond bird feed: proso millet for human health and environment. Agriculture 9:64. https://doi.org/10.3390/agriculture9030064
De Moura FF, Palmer AC, Finkelstein JL et al (2014) Are biofortified staple food crops improving vitamin A and iron status in women and children? New evidence from efficacy trials. Adv Nutr 5:568–570. https://doi.org/10.3945/an.114.006627
de Wet JMJ, Rao KEP, Mengesha MH et al (1983) Diversity in kodo millet, Paspalum scrobiculatum. Econ Bot 37:159–163. https://doi.org/10.1007/bf02858779
El-Alfy TS, Ezzat SM, Sleem AA (2012) Chemical and biological study of the seeds of Eragrostis tef (Zucc.) Trotter. Nat Prod Res 26:619–629. https://doi.org/10.1080/14786419.2010.538924
FAOSTAT (2019) http://www.fao.org/faostat/en/#data/QC/visualize. Accessed 2 Jan 2021
Fernandez DR, Vanderjagt DJ, Millson M et al (2003) Fatty acid, amino acid and trace mineral composition of Eleusine coracana (Pwana) seeds from northern Nigeria. Plant Foods Hum Nutr 58:1–10. https://doi.org/10.1023/B:QUAL.0000040323.67339.cb
Fiaz S, Ahmad S, Noor MA et al (2019) Applications of the CRISPR/Cas9 system for rice grain quality improvement: perspectives and opportunities. Int J Mol Sci 20:888. https://doi.org/10.3390/ijms20040888
Gaddameedi A, Phuke RM, Kavi Kishor PB et al (2020) Heterosis and combining ability for grain Fe and Zn concentration and agronomic traits in sorghum [(Sorghum bicolor (L.) Moench]. J King Saud Univ Sci 32:2989–2994. https://doi.org/10.1016/j.jksus.2020.08.003
Gebru YA, Sbhatu DB, Kim KP (2020) Nutritional composition and health benefits of teff (Eragrostis tef (Zucc.) Trotter). J Food Qual 2020:1–6. https://doi.org/10.1155/2020/9595086
Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157. https://doi.org/10.3389/fpls.2015.00157
Govindaraj M, Rai KN, Cherian B et al (2019) Breeding biofortified pearl millet varieties and hybrids to enhance millet markets for human nutrition. Agriculture 9:106. https://doi.org/10.3390/agriculture9050106
Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198. https://doi.org/10.1016/S0005-2736(00)00138-3
Habiyaremye C, Matanguihan JB, D’Alpoim Guedes J et al (2017) Proso millet (Panicum miliaceum L.) and its potential for cultivation in the Pacific Northwest, US: a review. Front Plant Sci 7:1961. https://doi.org/10.3389/fpls.2016.01961
Halka M, Smoleń S, Czernicka M et al (2019) Iodine biofortification through expression of HMT, SAMT and S3H genes in Solanum lycopersicum L. Plant Physiol Biochem 144:35–48. https://doi.org/10.1016/j.plaphy.2019.09.028
Haq N, Ogbe DF (1995) Fonio (Digitaria exilis and Digitaria iburua). In: Williams JT (ed) Cereals and pseudocereals. Chapman & Hall, London, pp 225–245
Hatakeyama M, Aluri S, Balachadran MT et al (2018) Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res 25:39–47. https://doi.org/10.1093/dnares/dsx036
Heuze V, Tran G, S Giger-Reverdin (2015) Scrobic (Paspalum scrobiculatum) forage and grain feedipedia—a programme by INRA, CIRAD, AFZ and FAO. http://www.feedipedia.org/node/401
Himanshu, Chauhan M, Sonawane SK et al (2018) Nutritional and neutraceutical properties of millets: a review. Clin J Nutr Diet 1:1–10
Hiremath SC, Dandin SB (1975) Cytology of Paspalum scrobiculatum Linn. Curr Sci 44:20–21
Hittalmani S, Mahesh HB, Shirke MD et al (2017) Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genom 18:465. https://doi.org/10.1186/s12864-017-3850-z
Hulse JH, Laing EM, Pearson OE (1980) Sorghum and the millets: their composition and nutritive value. Academic Press, New York
Hundera F, Arumuganathan K, Baenziger P (2000) Determination of relative nuclear DNA content of tef [Eragrostis tef (Zucc.) Trotter] using flow cytometry. J Genet Breed 54:165–168
Hunt HV, Badakshi F, Romanova O et al (2014) Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet, P. miliaceum. J Exp Bot 65:3165–3175. https://doi.org/10.1093/jxb/eru161
Izydorczyk G, Ligas B, Mikula K et al (2021) Biofortification of edible plants with selenium and iodine—a systematic literature review. Sci Total Environ 754:141983. https://doi.org/10.1016/j.scitotenv.2020.141983
Jarret RL, Ozias-Akins P, Phatak S et al (1995) DNA contents in Paspalum spp. determined by flow cytometry. Genet Resour Crop Evol 42:237–242. https://doi.org/10.1007/BF02431258
Joy EJM, Ander EL, Young SD et al (2014) Dietary mineral supplies in Africa. Physiol Plant 151:208–229. https://doi.org/10.1111/ppl.12144
Kodkany BS, Bellad RM, Mahantshetti NS et al (2013) Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. J Nutr 143:1489–1493. https://doi.org/10.3945/jn.113.176677
Korshunova YO, Eide D, Clark WG et al (1999) TheIRT1proteinfrom Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44. https://doi.org/10.1023/A:1026438615520
Kramer CV, Allen S (2015) Malnutrition in developing countries. Paediatr Child Health 25:422–427. https://doi.org/10.1016/j.paed.2015.04.002
Krishna TPA, Maharajan T, Roch GV et al (2020) Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front Plant Sci 11:662. https://doi.org/10.3389/fpls.2020.00662
Kubesova M, Moravcova L, Suda J et al (2010) Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia-Praha 82:81–96
Kulkarni LR, Naik RK (2000) Nutritive value, protein quality and organoleptic quality of kodo millet (Paspalum scrobiculatum). Karnataka J Agric Sci 13:125–129
Kumar A, Metwal M, Kaur S et al (2016) Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.], and their improvement using omics approaches. Front Plant Sci 7:934. https://doi.org/10.3389/fpls.2016.00934
Kumar A, Tomer V, Kaur A et al (2018) Millets: a solution to agrarian and nutritional challenges. Agric Food Secur 7:31. https://doi.org/10.1186/s40066-018-0183-3
Larson G, Piperno DR, Allaby RG et al (2014) Current perspectives and the future of domestication studies. Proc Natl Acad Sci 111:6139–6146. https://doi.org/10.1073/pnas.1323964111
Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102. https://doi.org/10.1111/j.1469-8137.2007.02343.x
Liang K, Liang S, Zhu H (2020) Comparative proteomics analysis of the effect of selenium treatment on the quality of foxtail millet. LWT 131:109691. https://doi.org/10.1016/j.lwt.2020.109691
Mackowiak CL, Grossl PR (1999) Iodate and iodide effects on iodine uptake and partitioning in rice (Oryza sativa L.) grown in solution culture. Plant Soil 212:135–143. https://doi.org/10.1023/a:1004666607330
Mahendrakar MD, Parveda M, Kishor PBK et al (2020) Discovery and validation of candidate genes for grain iron and zinc metabolism in pearl millet [Pennisetum glaucum (L.) R. Br.]. Sci Rep 10:16562. https://doi.org/10.1038/s41598-020-73241-7
Malik S (2015) Pearl millet-nutritional value and medicinal uses! Int J Adv Res Innov Ideas Educ 1:414–418
Manisseri C, Gudipati M (2012) Prebiotic activity of purified xylobiose obtained from ragi (Eleusine coracana, Indaf-15) Bran. Ind J Med Microbiol 52:251–257. https://doi.org/10.1007/s12088-011-0176-4
Manwaring HR, Bligh HFJ, Yadav R (2016) The challenges and opportunities associated with biofortification of pearl millet (Pennisetum glaucum) with elevated levels of grain iron and zinc. Front Plant Sci 7:1944. https://doi.org/10.3389/fpls.2016.01944
Marschner H, Rimmington G (1988) Mineral nutrition of higher plants. Plant Cell Environ 11:147–148. https://doi.org/10.1111/1365-3040.ep11604921
Martel E, De Nay D, Siljak-Yakovlev S et al (1997) Genome size variation of basic chromosome number in pearl millet and fourteen related Pennisetum species. J Hered 88:139–143. https://doi.org/10.1093/oxfordjournals.jhered.a023072
Mbithi-Mwikya S, Ooghe W, Van Camp J et al (2000) Amino acid profile after sprouting, autoclaving and lactic acid fermentation of finger millet (Eleusine coracana) and kidney beans (Phaseolus vulgaris L.). J Agric Food Chem 48:3081–3085. https://doi.org/10.1021/jf0002140
Mikulikova D, Cicova I, Anatalikova G et al (2005) Grains of nontraditional crops as sources of retrograded resistant starch. Czech J Genet Plant Breed 41:96–104. https://doi.org/10.17221/3667-CJGPB
Mishra M, Shukla YN, Kumar S (2000) Chemistry and biological activity of Paspalum scrobiculatum: a review. J Med Arom Plant Sci 22:288–292
Mohamed TIC, Zhu K, Issoufou A et al (2009) Functionality, in vitro digestibility and physicochemical properties of two varieties of defatted foxtail millet protein concentrates. Int J Mol Sci 10:522–438. https://doi.org/10.3390/ijms10125224
Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567. https://doi.org/10.1021/cr900112r
Murdock GP (1959) Africa: its people and their cultural history. McGraw-Hill, New York
Nadeem F, Ahmad Z, Wang R et al (2018) Foxtail millet [Setariaitalica (L.) Beauv.] grown under low nitrogen shows a smaller root system, enhanced biomass accumulation, and nitrate transporter expression. Front Plant Sci 9:205. https://doi.org/10.3389/fpls.2018.00205
Numan M, Khan AL, Asaf S et al (2021) From traditional breeding to genome editing for boosting productivity of the ancient grain tef [Eragrostis tef (Zucc.) Trotter]. Plants 10:628. https://doi.org/10.3390/plants10040628
Oei L, Zillikens MC, Ehghan A et al (2013) High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam study. Diabetes Care 36:1619–1628. https://doi.org/10.2337/dc12-1188
Olsen LL, Palmgren MG (2014) Many rivers to cross: the journey of zinc from soil to seed. Front Plant Sci 5:30. https://doi.org/10.3389/fpls.2014.00030
Parikh SJ, Yanovski JA (2003) Calcium intake and adiposity. Am J Clin Nutr 77:281–287. https://doi.org/10.1093/ajcn/77.2.281
Passi JS, Jain A (2014) Millets: the nutrient rich counterparts of wheat and rice. Press Information Bureau, Government of India. http://pib.nic.in/newsite/mbErel.asp
Paul S, Datta SK, Datta K (2015) miRNA regulation of nutrient homeostasis in plants. Front Plant Sci 6:232. https://doi.org/10.3389/fpls.2015.00232
Pujar M, Govindaraj M, Gangaprasad S et al (2020) Genetic variation and diversity for grain iron, zinc, protein and agronomic traits in advanced breeding lines of pearl millet [Pennisetum glaucum (L.) R. Br.] for biofortification breeding. Genet Resour Crop Evol 67:2009–2022. https://doi.org/10.1007/s10722-020-00956-x
Puranik S, Kam J, Sahu PP et al (2017) Harnessing finger millet to combat calcium deficiency in humans: challenges and prospects. Front Plant Sci 8:1311. https://doi.org/10.3389/fpls.2017.01311
Ramakrishnan M, Ceasar SA, Duraipandiyan V et al (2015) Using molecular markers to assess the genetic diversity and population structure of finger millet (Eleusine coracana (L.) Gaertn.) from various geographical regions. Genet Resour Crop Evol 63:361–376. https://doi.org/10.1007/s10722-015-0255-1
Rao KEP, de Wet JMJ, Brink DK et al (1987) Intraspecific variation and systematics of cultivated Setaria italica, foxtail millet (Poaceae). Econ Bot 41:108–116. https://doi.org/10.1007/BF02859358
Rao DB, Bhaskarachary K, Christina AGD et al (2017) Nutritional and health benefits of millets. In: Rao DB, Malleshi NG, Annor GA, Patil JV (eds) Millets value chain for nutritional security: a replicable success model from India. CABI, New Delhi, pp 24–48
Renganathan VG, Vanniarajan C, Karthikeyan A et al (2020) Barnyard millet for food and nutritional security: current status and future research direction. Front Genet 11:500. https://doi.org/10.3389/fgene.2020.00500
Roch GV, Maharajan T, Krishna TPA et al (2020) Expression of PHT1 family transporter genes contributes for low phosphate stress tolerance in foxtail millet (Setariaitalica) genotypes. Planta 252:98. https://doi.org/10.1007/s00425-020-03503-1
Sakamma S, Umesh KB, Girish MR et al (2018) Finger millet (Eleusine coracana (L.) Gaertn.) production system: status, potential, constraints and implications for improving small farmer’s welfare. J Agric Sci 10:162–179. https://doi.org/10.5539/jas.v10n1p162
Saleh ASM, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12:281–295. https://doi.org/10.1111/1541-4337.12012
Sanusi SN, Sulaiman SA, Hadiza HK (2019) Comparative of proximate and mineral composition of commercially-available millet types in Katsina metropolis, Nigeria. World J Food Sci Technol 3:14–19. https://doi.org/10.11648/j.wjfst.20190301.13
Schiavon M, Nardi S, Dalla Vecchia F et al (2020) Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant Soil 453:245–270. https://doi.org/10.1007/s11104-020-04635-9
Shankaramurthy KN, Somannavar MS (2019) Moisture, carbohydrate, protein, fat, calcium and zinc content in finger, foxtail, pearl and proso millets. Ind J Health Sci Biomed Res 12:228–232. https://doi.org/10.4103/kleuhsj.Kleuhs_32_19
Sharma N, Niranjan K (2018) Foxtail millet: properties, processing, health benefits, and uses. Food Rev Int 34:329–369. https://doi.org/10.1080/87559129.2017.1290103
Small E (2015) Teff and fonio-Africa’s sustainable cereals. Biodiversity 16:37–41. https://doi.org/10.1080/14888386.2014.997290
Srilekha K, Kamalaja T, Maheswari KU et al (2019) Nutritional composition of little millet flour. Int Res J Pure Appl Chem 31:1–4. https://doi.org/10.9734/irjpac/2019/v20i430140
Tadele Z, Assefa K (2012) Increasing food production in Africa by boosting the productivity of understudied crops. Agronomy 2:240–283. https://doi.org/10.3390/agronomy2040240
Takahashi H, Saito K (2008) Molecular biology and functional genomics for identification of regulatory networks of plant sulfate uptake and assimilatory metabolism. In: Sulfur metabolism in phototrophic organisms. Springer, Berlin/Heidelberg, pp 149–159
Tharifkhan SA, Perumal AB, Elumalai A et al (2021) Improvement of nutrient bioavailability in millets: emphasis on the application of enzymes. J Sci Food Agric. https://doi.org/10.1002/jsfa.11228
UNICEF/WHO/The World Bank Group joint child malnutrition estimates: levels and trends in child malnutrition: key findings of the 2021 edition
Upadhyaya HD, Dwivedi SL, Singh SK et al (2014) Forming core collections in barnyard, kodo, and little millets using morphoagronomic descriptors. Crop Sci 54:2673–2682. https://doi.org/10.2135/cropsci2014.03.0221
USDA Food Composition Databases (2017) Food data central. USDA, Washington
VanBuren R, Wai CM, Wang X et al (2020) Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nat Commun 11:884. https://doi.org/10.1038/s41467-020-14724-z
Varshney RK, Shi C, Thudi M et al (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976. https://doi.org/10.1038/nbt.3943
Vetriventhan M, Azevedo VCR, Upadhyaya HD et al (2020) Genetic and genomic resources, and breeding for accelerating improvement of small millets: current status and future interventions. Nucleus 63:217–239. https://doi.org/10.1007/s13237-020-00322-3
Vijayakumari J, Mushtari Begum J, Begum S et al (2003) Sensory attributes of ethnic foods from finger millet (Eleusine coracana). In: Proceeding of the national seminar on processing and utilization of millet for nutrition security: recent trends in millet processing and utilization. CCSHAV, Hisar, pp 7–12
Vodouhe RS, Dako GEA, Dansi A (2007) Fonio: a treasure for West Africa. In: Plant genetic resources and food security in West and Central Africa. Ibadan, Nigeria, pp 219–222
Wang X, Chen S, Ma X et al (2021) Genome sequence and genetic diversity analysis of an under-domesticated orphan crop, white fonio (Digitaria exilis). GigaScience 10:giab013. https://doi.org/10.1093/gigascience/giab013
Wanous MK (1990) Origin, taxonomy and ploidy of the millets and minor cereals. Plant Var Seeds 3:99–112
Watanabe M (1999) Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J Agric Food Chem 47:4500–4505. https://doi.org/10.1021/jf990498s
Webb P, Stordalen GA, Singh S et al (2018) Hunger and malnutrition in the 21st century. BMJ 361:k2238. https://doi.org/10.1136/bmj.k2238
Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364. https://doi.org/10.1093/jxb/erh064
Yadav OP, Gupta SK, Govindaraj M et al (2021) Genetic gains in pearl millet in India: insights into historic breeding strategies and future perspective. Front Plant Sci 12:645038. https://doi.org/10.3389/fpls.2021.64503
Yamunarani R, Govind G, Ramegowda V et al (2016) Genetic diversity for grain Zn concentration in finger millet genotypes: potential for improving human Zn nutrition. Crop J 4:229–234. https://doi.org/10.1016/j.cj.2015.12.001
Yang Q, Zhang W, Li J et al (2019) Physicochemical properties of starches in proso (non-waxy and waxy) and foxtail millets (non-waxy and waxy). Molecules 24:1743. https://doi.org/10.3390/molecules24091743
Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380. https://doi.org/10.1016/j.pbi.2009.04.005
Zhu F (2020) Fonio grains: physicochemical properties, nutritional potential and food applications. Compr Rev Food Sci Food Saf 19:3365–3389. https://doi.org/10.1111/1541-4337.12608
Zou C, Li L, Miki D et al (2019) The genome of broomcorn millet. Nat Commun 10:436. https://doi.org/10.1038/s41467-019-08409-5