Improvement of oxidation resistance of Nb–Ti–Si based alloys with additions of Al, Cr and B at different temperatures
Tóm tắt
The effects of Cr, Al and B addition on the microstructure and high-temperature oxidation behaviors (at 1200, 1250 and 1300 °C) of Nb–Ti–Si based alloys were investigated. The results showed that the addition of Cr stabilized α-Nb5Si3, while Al promoted the formation of β-Nb5Si3 and adding B promoted the formation of γ-Nb5Si3. Among the three elements, Al and Cr were beneficial to oxidation resistance at 1200 °C, and B was favorable to the oxidation resistance at 1300 °C. At 1250 °C, Al and B had the same effects on the improvement of oxidation resistance. The ratio of these alloying elements might play an important role in enhancing oxidation resistance. The oxidation resistance of the three kinds of silicides was compared, and the sequence was: γ-Nb5Si3> β-Nb5Si3> α-Nb5Si3. To predict the effects of the investigated alloying elements on the oxidation resistance of Nb–Ti–Si based alloys in a wider range of concentration, an artificial neural network (ANN) model was established, showing excellent accuracy and generalization ability. With the instructions of the ANN model, the oxidation resistance can be optimized with less additions of alloying elements.
Từ khóa
#Nb–Ti–Si alloys #Alloying #Oxidation resistance #Artificial neural networkTài liệu tham khảo
[1] B.P. Bewlay M.R. Jackson P.R. Subramanian JOM 51 1999 32 36 B.P. Bewlay, M.R. Jackson, P.R. Subramanian, JOM, 51 (1999) 32-36.
[2] L. Zheng G. Schmitz Y. Meng R. Chellali R. Schlesiger Crit. Rev. Solid State Mater. Sci. 37 2012 181 214 L. Zheng, G. Schmitz, Y. Meng, R. Chellali, R. Schlesiger, Crit. Rev. Solid State Mater. Sci., 37 (2012) 181-214.
[3] W. Shao W. Wang C. Zhou Corrosion Sci. 111 2016 786 792 W. Shao, W. Wang, C. Zhou, Corros. Sci., 111 (2016) 786-792.
[4] B. Bewlay M. Jackson P. Subramanian J.C. Zhao Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 34 2003 2043 2052 B. Bewlay, M. Jackson, P. Subramanian, J.C. Zhao, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 34 (2003) 2043-2052.
[5] K.S. Chan Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 35 2004 589 597 K.S. Chan, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 35 (2004) 589-597.
[6] E.S.K. Menon M.G. Mendiratta Mater. Sci. Forum, Trans Tech Publ 475 2005 717 720 E.S.K. Menon, M.G. Mendiratta, Mater. Sci. Forum, Trans Tech Publ, 2005, 475: 717-720.
[7] R.A. Perkins G.H. Meier JOM 42 1990 17 21 R.A. Perkins, G.H. Meier, JOM, 42 (1990) 17-21.
[8] L. Su L. Jia J. Weng Z. Hong C. Zhou H. Zhang Corrosion Sci. 88 2014 460 465 L. Su, L. Jia, J. Weng, Z. Hong, C. Zhou, H. Zhang, Corros. Sci., 88 (2014) 460-465.
[9] J. Geng P. Tsakiropoulos G. Shao Intermetallics 15 2007 69 76 J. Geng, P. Tsakiropoulos, G. Shao, Intermetallics, 15 (2007) 69-76.
[10] K. Zelenitsas P. Tsakiropoulos Mater. Sci. Eng., A 416 2006 269 280 K. Zelenitsas, P. Tsakiropoulos, Mater. Sci. Eng. A, 416 (2006) 269-280.
[11] J. Sha J. Liu C. Zhou Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 42 2011 1534 1543 J. Sha, J. Liu, C. Zhou, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 42 (2011) 1534-1543.
[12] A. Vazquez S.K. Varma J. Alloys Compd. 509 2011 7027 7033 A. Vazquez, S.K. Varma, J. Alloys Compd., 509 (2011) 7027-7033.
[13] L. Wang L. Jia R. Cui L. Zheng H. Zhang Chin. J. Aeronaut. 25 2012 292 296 L. Wang, L. Jia, R. Cui, L. Zheng, H. Zhang, Chinese J. Aeronaut., 25 (2012) 292-296.
[14] N. Esparza V. Rangel A. Gutierrez B. Arellano S. Varma Mater. A. T. High. Temp. 33 2016 105 114 N. Esparza, V. Rangel, A. Gutierrez, B. Arellano, S. Varma, Mater. at High Temp., 33 (2016) 105-114.
[15] T. Murakami S. Sasaki K. Ichikawa A. Kitahara Intermetallics 9 2001 621 627 T. Murakami, S. Sasaki, K. Ichikawa, A. Kitahara, Intermetallics, 9 (2001) 621-627.
[16] H. Zheng S. Lu J. Zhu G. Liu Int. J. Refract. Metals Hard Mater. 27 2009 659 663 H. Zheng, S. Lu, J. Zhu, G. Liu, Int. J. Refract. Met. Hard Mat., 27 (2009) 659-663.
[17] J. Zheng X. Hou X. Wang Y. Meng X. Zheng L. Zheng Corrosion Sci. 96 2015 186 195 J. Zheng, X. Hou, X. Wang, Y. Meng, X. Zheng, L. Zheng, Corros. Sci., 96 (2015) 186-195.
[18] J. Zheng X. Hou X. Wang Y. Meng X. Zheng L. Zheng Int. J. Refract. Metals Hard Mater. 54 2016 322 329 J. Zheng, X. Hou, X. Wang, Y. Meng, X. Zheng, L. Zheng, Int. J. Refract. Met. Hard Mat., 54 (2016) 322-329.
[19] H.Z. Zheng S.Q. Lu Y. Huang Corrosion Sci. 51 2009 434 438 H.Z. Zheng, S.Q. Lu, Y. Huang, Corros. Sci., 51 (2009) 434-438.
[20] J. Cheng S. Yi J.S. Park Intermetallics 23 2012 12 19 J. Cheng, S. Yi, J.S. Park, Intermetallics, 23 (2012) 12-19.
[21] S.N. Zhang L.N. Jia Y.L. Guo B. Kong F.X. Zhang H. Zhang Rare Met. 2017 1 9 S.N. Zhang, L.N. Jia, Y.L. Guo, B. Kong, F.X. Zhang, H. Zhang, Rare Metals, (2017) 1-9.
[22] Y.L. Guo L.N. Jia H.R. Zhang B. Kong Y.L. Huang H. Zhang Acta Metall. Sin. 2018 1 11 Y.L. Guo, L.N. Jia, H.R. Zhang, B. Kong, Y.L. Huang, H. Zhang, Acta Metall. Sin., (2018) 1-11.
[23] G. Liu L. Jia B. Kong S. Feng H. Zhang H. Zhang Mater. Sci. Eng., A 707 2017 452 458 G. Liu, L. Jia, B. Kong, S. Feng, H. Zhang, H. Zhang, Mater. Sci. Eng. A, 707 (2017) 452-458.
[24] Z. Lu Q. Pan X. Liu Y. Qin Y. He S. Cao Mech. Res. Commun. 38 2011 192 197 Z. Lu, Q. Pan, X. Liu, Y. Qin, Y. He, S. Cao, Mech. Res. Commun., 38 (2011) 192-197.
[25] G. Liu L. Jia B. Kong K. Guan H. Zhang Mater. Des. 129 2017 210 218 G. Liu, L. Jia, B. Kong, K. Guan, H. Zhang, Mater. Des., 129 (2017) 210-218.
[26] L. Su Effect of alloying and Mo-Si-B coating on the oxidation resistance of Nb-Si based ultra-high temperature alloys Ph.D. dissertation School of Materials Science and Engineering 2015 Beihang University Beijing, China L. Su, “Effect of alloying and Mo-Si-B coating on the oxidation resistance of Nb-Si based ultra-high temperature alloys,” Ph.D. dissertation, School of Materials Science and Engineering, Beihang University, Beijing, China, 2015.
[27] Z. Hong Effect of Cr and B on the Oxidation Resistance of Nb-Si Alloy at High Temperature M.S. thesis 2014 School of Material Science and Engineering, Beihang University Beijing, China Z. Hong, “Effect of Cr and B On The Oxidation Resistance of Nb-Si Alloy at High Temperature,” M.S. thesis, School of Material Science and Engineering, Beihang University, Beijing, China, 2014.
[28] J. Weng The Study of Oxidation Resistance of Nb-Si Multi-Alloy M.S. Thesis 2015 School of Materials Science and Enginering, Beihang University Beijing, China J. Weng, “The Study of Oxidation Resistance of Nb-Si Multi-alloy,” M.S. Thesis, School of Materials Science and Enginering, Beihang University, Beijing, China, 2015.
[29] I. Grammenos P. Tsakiropoulos Intermetallics 18 2010 242 253 I. Grammenos, P. Tsakiropoulos, Intermetallics, 18 (2010) 242-253.
[30] J. Geng P. Tsakiropoulos G. Shao Mater. Sci. Eng., A 441 2006 26 38 J. Geng, P. Tsakiropoulos, G. Shao, Mater. Sci. Eng. A, 441 (2006) 26-38.
[31] B.P. Bewlay H.A. Lipsitt M.R. Jackson W.J. Reeder J.A. Sutliff Mater. Sci. Eng., A 192 1995 534 543 B.P. Bewlay, H.A. Lipsitt, M.R. Jackson, W.J. Reeder, J.A. Sutliff, Mater. Sci. Eng. A, 192 (1995) 534-543.
[32] K. Zelenitsas P. Tsakiropoulos Intermetallics 13 2005 1079 1095 K. Zelenitsas, P. Tsakiropoulos, Intermetallics, 13 (2005) 1079-1095.
[33] X.W. Liu Y.Q. Su L.S. Luo K. Li F.Y. Dong J.J. Guo H.Z. Fu Int. J. Hydrogen Energy 36 2011 3260 3267 X.W. Liu, Y.Q. Su, L.S. Luo, K. Li, F.Y. Dong, J.J. Guo, H.Z. Fu, Int. J. Hydrog. Energy, 36 (2011) 3260-3267.
[34] C.Y. Jo D.H. Kim Y.S. Yoo Mater. Sci. Forum, Trans Tech Publications Ltd 486 2005 460 463 Jo C Y, Kim D H, Yoo Y S, et al Mater. Sci. Forum, Trans Tech Publications Ltd, 2005, 486: 460-463.
[35] S. Zhang X. Guo Intermetallics 57 2015 83 92 S. Zhang, X. Guo, Intermetallics, 57 (2015) 83-92.
[36] N. Birks G.H. Meier F.S. Pettit Introduction to the High-Temperature Oxidation of Metals 2006 Cambridge University Press N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High-Temperature Oxidation of Metals, Cambridge University Press, 2006.
[37] D. Ye J. Hu Practical Inorganic Thermodynamic Data Sheet second ed. 2002 Metallurgical Industry Press Beijing D. Ye, J. Hu, Practical inorganic thermodynamic data sheet, second ed., Metallurgical Industry Press, Beijing, 2002.
[38] F. Wang H. Lou S. Zhu W. Wu Oxid. Metals 45 1996 39 50 F. Wang, H. Lou, S. Zhu, W. Wu, Oxid. Met., 45 (1996) 39-50.
[39] B. Voglewede V.R. Rangel S.K. Varma Corrosion Sci. 61 2012 123 133 B. Voglewede, V.R. Rangel, S.K. Varma, Corros. Sci., 61 (2012) 123-133.
[40] P. Hou J. Stringer Mater. Sci. Eng., A 202 1995 1 10 P. Hou, J. Stringer, Mater. Sci. Eng. A, 202 (1995) 1-10.
[41] S. Zhang X. Guo Intermetallics 70 2016 33 44 S. Zhang, X. Guo, Intermetallics, 70 (2016) 33-44.
[42] Y. Guo L. Jia B. Kong F. Zhang J. Liu H. Zhang Corrosion Sci. 127 2017 260 269 Y. Guo, L. Jia, B. Kong, F. Zhang, J. Liu, H. Zhang, Corros. Sci., 127 (2017) 260-269.
[43] Y. Guo L. Jia B. Kong H. Zhang H. Zhang Mater. Sci. Eng., A 701 2017 149 157 Y. Guo, L. Jia, B. Kong, H. Zhang, H. Zhang, Mater. Sci. Eng. A, 701 (2017) 149-157.