Improvement of nanopore structure SnO2 electron-transport layer for carbon-based CsPbIBr2 perovskite solar cells

Materials Science in Semiconductor Processing - Tập 148 - Trang 106787 - 2022
Qingchen He1, Haiming Zhang1, Siqi Han1,2, Yuwen Xing1, Yujie Li1, Xianjing Zhang1, Rufeng Wang1
1School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
2Intelligent Manufacturing College, Tianjin Sino-German University of Applied Sciences, Tianjin, 300350, China

Tài liệu tham khảo

Kim, 2020, Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells, Science, 370, 108, 10.1126/science.abc4417 Qin, 2021, A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS, Adv. Mater., 33, 10.1002/adma.202105290 He, 2021, Wide-bandgap organic-inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells, Energy Environ. Sci., 14, 5723, 10.1039/D1EE01562A Long, 2021, pi-pi conjugate structure enabling the channel construction of carrier-facilitated transport in 1D-3D multidimensional CsPbI2Br solar cells with high stability, Nano Energy, 89, 10.1016/j.nanoen.2021.106340 Pan, 2021, High-performance photovoltaic application of the 2D all-inorganic Ruddlesden-Popper perovskite heterostructure Cs2PbI2Cl2/MAPbI3, Phys. Chem. Chem. Phys., 23, 23703, 10.1039/D1CP03375A Zheng, 2020, High-performance CsPbIxBr3-x all-inorganic perovskite solar cells with efficiency over 18\% via spontaneous interfacial manipulation, Adv. Funct. Mater., 30, 10.1002/adfm.202000457 Liu, 2020, Promoting the efficiency and stability of CsPbIBr2-based all-inorganic perovskite solar cells through a functional Cu2+ doping strategy, ACS Appl. Mater. Interfaces, 12, 23984, 10.1021/acsami.0c04938 Sheikh, 2021, Nanostructured perovskite oxides for dye-sensitized solar cells, J. Phys. D Appl. Phys., 54, 10.1088/1361-6463/ac252c Song, 2015, Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer, Chem. Lett., 44, 610, 10.1246/cl.150056 Mohammadi, 2021, Light trapping in perovskite solar cells with plasmonic core/shell nanorod array: a numerical study, Energy Rep., 7, 1404, 10.1016/j.egyr.2021.02.071 Chen, 2021, A facile solution processed ZnO@ZnS core-shell nanorods arrays for high-efficiency perovskite solar cells with boosted stability, J. Energy Chem., 61, 553, 10.1016/j.jechem.2021.02.018 Khambunkoed, 2021, Fully-covered slot-die-coated ZnO thin films for reproducible carbon-based perovskite solar cells, Mater. Sci. Semicond. Process., 136, 10.1016/j.mssp.2021.106151 Silva, 2021, High-performance self-powered photodetectors achieved through the pyro-phototronic effect in Si/SnOx/ZnO heterojunctions, Nano Energy, 89, 10.1016/j.nanoen.2021.106347 Sun, 2021, Interfacial-engineering enhanced performance and stability of ZnO nanowire-based perovskite solar cells, Nanotechnology, 32, 10.1088/1361-6528/abdbeb He, 2021, Scalable preparation of high-performance ZnO-SnO2 cascaded electron transport layer for efficient perovskite solar modules, SOLAR RRL, 6 Roose, 2019, The role of charge selective contacts in perovskite solar cell stability, Adv. Energy Mater., 9, 10.1002/aenm.201803140 Singh, 2016, Role of metal oxide electron-transport layer modification on the stability of high performing perovskite solar cells, ChemSusChem, 9, 2559, 10.1002/cssc.201601004 Chen, 2022, Synergy of mesoporous SnO2 and RbF modification for high-efficiency and stable perovskite solar cells, J. Energy Chem., 66, 250, 10.1016/j.jechem.2021.08.014 Guo, 2021, Composite electrode based on single-atom Ni doped graphene for planar carbon-based perovskite solar cells, Mater. Des., 209, 10.1016/j.matdes.2021.109972 Liu, 2021, Self-spreading produces highly efficient perovskite solar cells, Nano Energy, 90, 10.1016/j.nanoen.2021.106509 Niu, 2021, Nb2C MXenes modified SnO2 as high quality electron transfer layer for efficient and stability perovskite solar cells, Nano Energy, 89, 10.1016/j.nanoen.2021.106455 Kavan, 2017, Ultrathin buffer layers of SnO2 by atomic layer deposition: perfect blocking function and thermal stability, J. Phys. Chem. C, 121, 342, 10.1021/acs.jpcc.6b09965 Peng, 2017, Efficient indium-doped TiOx electron transport layers for high-performance perovskite solar cells and perovskite-silicon tandems, Adv. Energy Mater., 7, 10.1002/aenm.201601768 Liu, 2019, SnO2-Based perovskite solar cells: configuration design and performance improvement, SOLAR RRL, 3, 10.1002/solr.201800292 Ke, 2015, Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells, J. Mater. Chem., 3, 24163, 10.1039/C5TA06574G Snaith, 2014, Anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett., 5, 1511, 10.1021/jz500113x Phung, 2018, The impact of nano- and microstructure on the stability of perovskite solar cells, Small, 14, 10.1002/smll.201802573 Tress, 2015, Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field, Energy Environ. Sci., 8, 995, 10.1039/C4EE03664F Shao, 2016, Pore size dependent hysteresis elimination in perovskite solar cells based on highly porous TiO2 films with widely tunable pores of 15-34 nm, Chem. Mater., 28, 7134, 10.1021/acs.chemmater.6b03445 Yang, 2018, High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2, Nat. Commun., 9, 3239, 10.1038/s41467-018-05760-x Courtier, 2019, How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model, Energy Environ. Sci., 12, 396, 10.1039/C8EE01576G Jung, 2019, Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications, Chem. Soc. Rev., 48, 2011, 10.1039/C8CS00656C Neophytou, 2019, Enhancing the charge extraction and stability of perovskite solar cells using strontium titanate (SrTiO3) electron transport layer, ACS Appl. Energy Mater., 2, 8090, 10.1021/acsaem.9b01567 Sun, 2022, Boosted inner surface charge transfer in perovskite Nanodots@Mesoporous titania frameworks for efficient and selective photocatalytic CO2 reduction to methane, Angew. Chem. Int. Ed., 61, 872 Gu, 2022, Flexible perovskite solar cells with enhanced performance based on a void-free imbedded interface via a thin layer of mesoporous TiO2, ACS Applied Energy Materials. Int. Edit., 5, 2242, 10.1021/acsaem.1c03770 Zhang, 2022, Achieving photomultiplication in dye-sensitized narrowband photodetectors by electron injection through a thin hole-transporting layer, Adv. Opt. Mater., 10 Lee, 2022, Compact SnO2/mesoporous TiO2 bilayer electron transport layer for perovskite solar cells fabricated at low process temperature, Nanomaterials, 12, 718, 10.3390/nano12040718 Wu, 2022, Properties of TiO2 film prepared by anodization as electron transport layer for perovskite solar cells, Int. J. Electrochem. Sci., 17 Alizadeh, 2022, Unveiling the influence of SmFeO3-TiO2 nanocomposites as high performance photoanodes of dye-sensitized solar cells, J. Mol. Liq., 348, 10.1016/j.molliq.2021.118070 Lin, 2022, Fabrication of stable CsPbI2Br perovskite solar cells in the humid air, Acta Phys. Chim. Sin., 38 Ke, 2015, Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells, J. Mater. Chem., 3, 24163, 10.1039/C5TA06574G Roose, 2016, Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells, Nano Energy, 30, 517, 10.1016/j.nanoen.2016.10.055 Xiong, 2016, Performance enhancement of high temperature SnO2-based planar perovskite solar cells: electrical characterization and understanding of the mechanism, J. Mater. Chem., 4, 8374, 10.1039/C6TA01839D Zhang, 2020, Improving performance of perovskite solar cells based on ZnO nanorods via rod-length control and sulfidation treatment, Mater. Sci. Semicond. Process., 117, 10.1016/j.mssp.2020.105205 Pan, 2021, Interface engineering of high performance all-inorganic perovskite solar cells via low-temperature processed TiO2 nanopillar arrays, Nano Res., 14, 3431, 10.1007/s12274-021-3566-x Wang, 2021, Commercial carbon-based all-inorganic perovskite solar cells with a high efficiency of 13.81%: interface engineering and photovoltaic performance, ACS Appl. Energy Mater., 4, 3255, 10.1021/acsaem.0c03036 Zhao, 2021, A safe flexible self-powered wristband system by integrating defective MnO2-x nanosheet-based zinc-ion batteries with perovskite solar cells, ACS Nano, 15, 10597, 10.1021/acsnano.1c03341 Adnan, 2020, Highly efficient planar heterojunction perovskite solar cells with sequentially dip-coated deposited perovskite layers from a non-halide aqueous lead precursor, RSC Adv., 10, 5454, 10.1039/C9RA09607H Mufti, 2019, The impact of growth temperature on nanorod morphology and optical properties for CH3NH3PbI3 perovskite solar cell device application, Mater. Today Proc., 17, 1627, 10.1016/j.matpr.2019.06.192 Han, 2021, High-performance carbon-based CsPbIBr2 perovskite solar cells fabricated by precursor film preparation process, Acta Phys. Sin.-Ch. Ed., 70 Han, 2021, Solution-processed amino acid modified SnO2 electron transport layer for carbon-based CsPbIBr2 perovskite solar cells, Mater. Sci. Semicond. Process., 133, 10.1016/j.mssp.2021.105964 He, 2021, Improvement of thiourea (lewis base)-modified SnO2 electron-transport layer for carbon-based CsPbIBr2 perovskite solar cells, ACS Appl. Energy Mater., 4, 10958, 10.1021/acsaem.1c01918 Liu, 2021, Remarkable quality improvement of CsPbIBr2 perovskite film by cellulose acetate addition for efficient and stable carbon-based inorganic perovskite solar cells, Chem. Eng. J., 424, 10.1016/j.cej.2021.130324 Lu, 2021, Performance improvement of all-inorganic, hole-transport-layer-free perovskite solar cells through dipoles-adjustion by polyethyleneimine incorporating, IEEE Electron. Device Lett., 42, 537, 10.1109/LED.2021.3058784 Wang, 2020, Optimizing the substrate pre-heating and post-annealing temperatures for fabricating high-performance carbon-based CsPbIBr2 inorganic perovskite solar cells, Electrochim. Acta, 349, 10.1016/j.electacta.2020.136354 Qi, 2021, Quantum dot interface-mediated CsPbIBr2 film growth and passivation for efficient carbon-based solar cells, ACS APPLIED MATERIALS \& INTERFACES, 13, 55338 Zhu, 2020, Interfacial voids trigger carbon-based, all-inorganic CsPbIBr2 perovskite solar cells with photovoltage exceeding 1.33 V, NANO-MICRO LETTERS, 12, 87, 10.1007/s40820-020-00425-1 Du, 2021, p-Type charge transfer doping of graphene oxide with (NiCo)(1-y)FeyOx for air-stable, all-inorganic CsPbIBr2 perovskite solar cells, Angew. Chem. Int. Edit., 60, 10608, 10.1002/anie.202016703