Improvement of leaf K+ retention is a shared mechanism behind CeO2 and Mn3O4 nanoparticles improved rapeseed salt tolerance
Tóm tắt
Từ khóa
Tài liệu tham khảo
An J, Hu PG, Li FJ, Wu HH, Shen Y, White JC, Tian XL, Li ZH, Giraldo JP (2020) Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ Sci Nano 7(8):2214–2228. https://doi.org/10.1039/d0en00387e
Ankit G, Beenu T, Kumar Sihag M, Vikas K, Vivek S, Suman S (2021). Rapeseed/Canola (Brassica napus) seed. In: Tanwar B, Goyal A (eds) Oilseeds: health attributes and food applications. Springer, Singapore, pp 47–71. https://doi.org/10.1007/978-981-15-4194-0_2
Anzano A, Bonanomi G, Mazzoleni S, Lanzotti V (2022) Plant metabolomics in biotic and abiotic stress: a critical overview. Phytochem Rev 21(2):503–524. https://doi.org/10.1007/s11101-021-09786-w
Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109(1):8–14. https://doi.org/10.1016/j.scienta.2006.02.025
Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65(5):1241–1257. https://doi.org/10.1093/jxb/ert430
Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131(2):676–683. https://doi.org/10.1104/pp.011445
Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28(10):1230–1246. https://doi.org/10.1111/j.1365-3040.2005.01364.x
Chen LL, Peng YQ, Zhu L, Huang Y, Bie ZL, Wu HH (2022) CeO2 nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system. Chemosphere 299:134474. https://doi.org/10.1016/j.chemosphere.2022.134474
Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59(10):2697–2706. https://doi.org/10.1093/jxb/ern128
Demidchik V (2014) Mechanisms and physiological roles of K+ efflux from root cells. J Plant Physiol 171(9):696–707. https://doi.org/10.1016/j.jplph.2014.01.015
Deng X, Chen Y, Yang Y, Lu L, Yuan X, Zeng H, Zeng Q (2020) Cadmium accumulation in rice (Oryza sativa L.) alleviated by basal alkaline fertilizers followed by topdressing of manganese fertilizer. Environ Pollut 262:114289. https://doi.org/10.1016/j.envpol.2020.114289
Gao Z, Zhang J, Zhang J, Zhang W, Zheng L, Borjigin T, Wang Y (2022) Nitric oxide alleviates salt-induced stress damage by regulating the ascorbate-glutathione cycle and Na+/K+ homeostasis in Nitraria tangutorum Bobr. Plant Physiol Biochem 173:46–58. https://doi.org/10.1016/j.plaphy.2022.01.017
Gohari G, Zareei E, Rostami H, Panahirad S, Kulak M, Farhadi H, Amini M, Martinez-Ballesta MDC, Fotopoulos V (2021) Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. Flame Seedless under salt stress conditions. Ecotoxicol Environ Saf 220:112402. https://doi.org/10.1016/j.ecoenv.2021.112402
Imadi SR, Shah SW, Kazi AG, Azooz MM, Ahmad P (2016) Phytoremediation of saline soils for sustainable agricultural productivity. In: Ahmad P (ed) Plant metal interaction. Elsevier, Holland, pp 455–468. https://doi.org/10.1016/B978-0-12-803158-2.00018-7
Karami A, Sepehri A (2018) Beneficial role of MWCNTs and SNP on growth, physiological and photosynthesis performance of barley under NaCl stress. J Soil Sci Plant Nut 18(3):752–771. https://doi.org/10.4067/S0718-95162018005002202
Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M, Zhang X, Ali S, Huang L (2020) Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem 156:221–232. https://doi.org/10.1016/j.plaphy.2020.09.018
Khan MN, Li YH, Fu CC, Hu J, Chen LL, Yan JS, Khan Z, Wu HH, Li ZH (2022) CeO2 nanoparticles seed priming increases salicylic acid level and ROS scavenging ability to improve rapeseed salt tolerance. Global Chall n/a(n/a):2200025. https://doi.org/10.1002/gch2. 202200025
Khan MN, Li YH, Khan Z, Chen LL, Liu JH, Hu J, Wu HH, Li ZH (2021) Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and alpha-amylase activities. J Nanobiotechnology 19(1):276. https://doi.org/10.1186/s12951-021-01026-9
Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013) Modulation of antioxidant machinery in alpha-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250(5):1079–1089. https://doi.org/10.1007/s00709-013-0484-0
Li YH, Liu JH, Fu CC, Khan MN, Hu J, Zhao FM, Wu HH, Li ZH (2022a) CeO2 nanoparticles modulate Cu-Zn superoxide dismutase and lipoxygenase-IV isozyme activities to alleviate membrane oxidative damage to improve rapeseed salt tolerance. Environ Sci Nano 9(3):1116–1132. https://doi.org/10.1039/d1en00845e
Li ZQ, Zhu L, Zhao FM, Li JQ, Zhang X, Kong XJ, Wu HH, Zhang ZY (2022b) Plant salinity stress response and nano-enabled plant salt tolerance. Front Plant Sci 13:843994. https://doi.org/10.3389/fpls.2022.843994
Liu J, Shabala S, Shabala L, Zhou M, Meinke H, Venkataraman G, Chen Z, Zeng F, Zhao Q (2019) Tissue-specific regulation of Na+ and K+ transporters explains genotypic differences in salinity stress tolerance in rice. Front Plant Sci 10:1361. https://doi.org/10.3389/fpls.2019.01361
Liu JH, Li GJ, Chen LL, Gu JJ, Wu HH, Li ZH (2021) Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. J Nanobiotechnology 19(1):153. https://doi.org/10.1186/s12951-021-00892-7
Liu Y, Cao X, Yue L, Wang C, Tao M, Wang Z, Xing B (2022) Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: reactive oxygen species homeostasis and rhizobacteria regulation. Environ Pollut 299:118900. https://doi.org/10.1016/j.envpol.2022.118900
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
Lu L, Huang M, Huang YX, Corvini PFX, Ji R, Zhao LJ (2020) Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environ Sci Nano 7(6):1692–1703. https://doi.org/10.1039/d0en00214c
Mejicanos G, Sanjayan N, Kim IH, Nyachoti CM (2016) Recent advances in canola meal utilization in swine nutrition. J Anim Sci Technol 58:7. https://doi.org/10.1186/s40781-016-0085-5
Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19. https://doi.org/10.1016/j.tplants.2016.08.002
Mohammadi MHZ, Panahirad S, Navai A, Bahrami MK, Kulak M, Gohari G (2021) Cerium oxide nanoparticles (CeO2-NPs) improve growth parameters and antioxidant defense system in Moldavian Balm (Dracocephalum moldavica L.) under salinity stress. Plant Stress https://doi.org/10.1016/j.stress.2021.100006
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Bio 59(5):651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Newkirk GM, Wu H, Santana I, Giraldo JP (2018) Catalytic scavenging of plant reactive oxygen species in vivo by anionic cerium oxide nanoparticles. J vis Exp 26(138):58373. https://doi.org/10.3791/58373
Oliveira HC, Gomes BC, Pelegrino MT, Seabra AB (2016) Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 61:10–19. https://doi.org/10.1016/j.niox.2016.09.010
Pace R, Benincasa P, Ghanem ME, Quinet M, Lutts S (2012) Germination of untreated and primed seeds in rapeseed (Brassica napus L.) under salinity and low matric potential. Exp Agric 48(2):238–251. https://doi.org/10.1017/S0014479711001189
Rashed MH, Hoque TS, Jahangir MMR, Hashem MA (2019) Manganese as a micronutrient in agriculture: crop requirement and management. J Environ Sci & Natural Resources 12(1&2):225–241. https://doi.org/10.3329/jesnr.v12i1-2.52040
Rossi L, Zhang W, Lombardini L, Ma XM (2016) The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ Pollut 219:28–36. https://doi.org/10.1016/j.envpol.2016.09.060
Rossi L, Zhang W, Ma XM (2017) Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environ Pollut 229:132–138. https://doi.org/10.1016/j.envpol.2017.05.083
Saad-Allah KM, Ragab GA (2020) Sulfur nanoparticles mediated improvement of salt tolerance in wheat relates to decreasing oxidative stress and regulating metabolic activity. Physiol Mol Biol Plants 26(11):2209–2223. https://doi.org/10.1007/s12298-020-00899-8
Shabala S, Munns R (2017) Salinity stress: physiological constraints and adaptive mechanisms. In Shabala S (ed) Plant stress physiology, 2nd edn. CABI, Australia. https://doi.org/10.1079/9781780647296.0024
Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
Singh D, Sillu D, Kumar A, Agnihotri S (2021) Dual nanozyme characteristics of iron oxide nanoparticles alleviate salinity stress and promote the growth of an agroforestry tree Eucalyptus Tereticornis Sm. Environ Sci Nano 8(5):1308–1325. https://doi.org/10.1039/d1en00040c
Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang Z, Song J, Xu Y (2009) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149(2):1141–1153. https://doi.org/10.1104/pp.108.129494
van Ittersum MK, van Bussel LGJ, Wolf J, Grassini P, van Wart J, Guilpart N, Claessens L, de Groot H, Wiebe K, Mason-D’Croz D, Yang H, Boogaard H, van Oort PAJ, van Loon MP, Saito K, Adimo O, Adjei-Nsiah S, Agali A, Bala A, Chikowo R, Kaizzi K, Kouressy M, Makoi JHJR, Ouattara K, Tesfaye K, Cassman KG (2016) Can sub-Saharan Africa feed itself? PNAS 113(52):14964–14969. https://doi.org/10.1073/pnas.1610359113
Wahid I, Rani P, Kumari S, Ahmad R, Hussain SJ, Alamri S, Tripathy N, Khan MIR (2022) Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat. Chemosphere 287(2):132142. https://doi.org/10.1016/j.chemosphere.2021.132142
Whatmore AM, Reed RH (1990) Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J Gen Microbiol 136(12):2521–2526. https://doi.org/10.1099/00221287-136-12-2521
Wu HH, Li ZH (2022a) Nano-enabled agriculture: how nanoparticles cross barriers in plants? Plant Communications in Press. https://doi.org/10.1016/j.xplc.2022.100346
Wu HH, Li ZH (2022b) Recent advances in nano-enabled agriculture for improving plant performance. Crop J 10(1):1–12. https://doi.org/10.1016/j.cj.2021.06.002
Wu HH, Shabala L, Barry K, Zhou M, Shabala S (2013) Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. Physiol Plant 149(4):515–527. https://doi.org/10.1111/ppl.12056
Wu HH, Shabala L, Zhou M, Shabala S (2014) Durum and bread wheat differ in their ability to retain potassium in leaf mesophyll: implications for salinity stress tolerance. Plant Cell Physiol 55(10):1749–1762. https://doi.org/10.1093/pcp/pcu105
Wu HH, Shabala L, Zhou M, Shabala S (2015) Chloroplast-generated ROS dominate NaCl- induced K+ efflux in wheat leaf mesophyll. Plant Signal Behav 10(5):e1013793. https://doi.org/10.1080/15592324.2015.1013793
Wu HH, Tito N, Giraldo JP (2017) Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11(11):11283–11297. https://doi.org/10.1021/acsnano.7b05723
Wu HH, Shabala L, Shabala S, Giraldo JP (2018a) Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environ Sci Nano 5(7):1567–1583. https://doi.org/10.1039/c8en00323h
Wu HH, Zhang XC, Giraldo JP, Shabala S (2018b) It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant Soil 431(1–2):1–17. https://doi.org/10.1007/s11104-018-3770-y
Wu HH, Shabala L, Zhou M, Su N, Wu Q, Ul-Haq T, Zhu J, Mancuso S, Azzarello E, Shabala S (2019) Root vacuolar Na+ sequestration but not exclusion from uptake correlates with barley salt tolerance. Plant J 100(1):55–67. https://doi.org/10.1111/tpj.14424
Ylvisaker JR (1982) Required MD coverage last resort to solving hospitals’ liability problems. Mich Med 81(29):328–331
You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092. https://doi.org/10.3389/fpls.2015.01092
Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H, Xing B, Wang Z, Ji R (2020) Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem 68(7):1935–1947. https://doi.org/10.1021/acs.jafc.9b06615
Zhou H, Wu HH, Zhang F, Su Y, Guan WX, Xie YJ, Giraldo JP, Shen WB (2021) Molecular basis of cerium oxide nanoparticle enhancement of rice salt tolerance and yield. Environ Sci Nano 8(11):3294–3311. https://doi.org/10.1039/d1en00390a