Improvement of acid resistance of Zn-doped dentin by newly generated chemical bonds
Tài liệu tham khảo
Wierichs, 2015, Systematic review on noninvasive treatment of root caries lesions, J. Dent. Res., 94, 261, 10.1177/0022034514557330
Pitts, 2017, Dental caries, Nat. Rev. Dis. Prim., 3, 17030, 10.1038/nrdp.2017.30
Linde, 1993, Dentinogenesis, Crit. Rev. Oral Biol. Med., 4, 679, 10.1177/10454411930040050301
Houllé, 1997, High Resolution Electron Microscopy: Structure and growth mechanisms of human dentin crystals, J. Dent. Res., 76, 895, 10.1177/00220345970760041101
Bodier-Houllé, 1998, First experimental evidence for human dentine crystal formation involving conversion of octacalcium phosphate to hydroxyapatite, Acta Crystallogr. Sect. D Biol. Crystallogr., 54, 1377, 10.1107/S0907444998005769
Young, 1970, Neutron diffraction studies of human tooth enamel, Arch. Oral Biol., 15, 47, 10.1016/0003-9969(70)90144-5
Derise, 1974, Mineral composition of normal human enamel and dentin and the relation of composition to dental caries: II. Microminerals, J. Dent. Res., 53, 853, 10.1177/00220345740530041601
Zapanta LeGeros, 1981, Apatites in biological systems, Prog. Cryst. Growth Charact., 4, 1, 10.1016/0146-3535(81)90046-0
Whelton, 2019, Fluoride revolution and dental caries: Evolution of policies for global use, J. Dent. Res., 98, 837, 10.1177/0022034519843495
Marcenes, 2013, Global burden of oral conditions in 1990–2010: A systematic analysis, J. Dent. Res., 92, 592, 10.1177/0022034513490168
González-Cabezas, 2018, Recent advances in remineralization therapies for caries lesions, Adv. Dent. Res., 29, 55, 10.1177/0022034517740124
Lussi, 2015, The future of fluorides and other protective agents in erosion prevention, Caries Res., 49, 18, 10.1159/000380886
Gordon, 2015, Amorphous intergranular phases control the properties of rodent tooth enamel, Science (80-.), 347, 746, 10.1126/science.1258950
Lippert, 2013, Strontium and caries: A long and complicated relationship, Caries Res., 47, 34, 10.1159/000343008
Wiesmann, 1997, Magnesium in newly formed mineral of rat incisor, J. Bone Miner. Res., 12, 380, 10.1359/jbmr.1997.12.3.380
Xue, 2013, X-ray microdiffraction, TEM characterization and texture analysis of human dentin and enamel, J. Microsc., 251, 144, 10.1111/jmi.12053
Voegel, 1977, Ultrastructural study of apatite crystal dissolution in human dentine and bone, J. Biol. Buccale., 5, 181
Besnard, 2021, Analysis of in vitro demineralised human enamel using multi-scale correlative optical and scanning electron microscopy, and high-resolution synchrotron wide-angle X-ray scattering, Mater. Des., 206, 109739, 10.1016/j.matdes.2021.109739
Yamamoto, 2001, Fluoride uptake in human teeth from fluoride-releasing restorative material in vivo and in vitro: Two-dimensional mapping by EPMA-WDX, Caries Res., 35, 111, 10.1159/000047441
Yagi, 2017, Use of PIXE/PIGE for sequential Ca and F measurements in root carious model, Sci. Rep., 7, 13450, 10.1038/s41598-017-14041-4
H. Yamamoto, M. Nomachi, K. Yasuda, Y. Iwami, S. Ebisu, N. Yamamoto, T. Sakai, T. Kamiya, Fluorine mapping of teeth treated with fluorine-releasing compound using PIGE, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 210 (2003) 388–394. 10.1016/S0168-583X(03)01039-5.
Dababneh, 1993, Excitation function of the nuclear reaction 19F(p, αγ)16O in the proton energy range 0.3–3.0 MeV, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms., 83, 319, 10.1016/0168-583X(93)95849-Z
Sakai, 2002, JAERI Takasaki in-air micro-PIXE system for various applications, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms., 190, 271, 10.1016/S0168-583X(02)00469-X
Matsunaga, 2010, Atsushi Nakahira, Mechanism of incorporation of zinc into hydroxyapatite, Acta Biomater., 6, 2289, 10.1016/j.actbio.2009.11.029
Kuwahara, 2018, Mild deoxygenation of sulfoxides over plasmonic molybdenum oxide hybrid with dramatic activity enhancement under visible light, J. Am. Chem. Soc., 140, 9203, 10.1021/jacs.8b04711
Shirley, 1972, High-resolution x-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B., 5, 4709, 10.1103/PhysRevB.5.4709
Ravel, 2005, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 12, 537, 10.1107/S0909049505012719
Rehr, 2000, Theoretical approaches to x-ray absorption fine structure, Rev. Mod. Phys., 72, 621, 10.1103/RevModPhys.72.621
Matsunaga, 2008, First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate, J. Chem. Phys., 128, 10.1063/1.2940337
R Core Team, R: A language and environment for statistical computing, 2019. https://www.r-project.org/.
Wickham, 2016
Lakomaa, 1977, Mineral composition of enamel and dentin of primary and permanent teeth in Finland, Scand. J. Dent. Res., 85, 89
Charadram, 2013, Structural analysis of reactionary dentin formed in response to polymicrobial invasion, J. Struct. Biol., 181, 207, 10.1016/j.jsb.2012.12.005
Morgunova, 1999, Structure of Human Pro-Matrix Metalloproteinase-2: Activation Mechanism Revealed, Science (80-.), 284, 1667, 10.1126/science.284.5420.1667
Sulyanto, 2021, Biomineralization of dental tissues treated with silver diamine fluoride, J. Dent. Res., 100, 1099, 10.1177/00220345211026838
Coffey, 1970, Analysis of human dentinal fluid, Oral Surgery, Oral Med. Oral Pathol., 30, 835, 10.1016/0030-4220(70)90348-8
Miyaji, 2005, Formation and structure of zinc-substituted calcium hydroxyapatite, Mater. Res. Bull., 40, 209, 10.1016/j.materresbull.2004.10.020
Ren, 2009, Characterization and structural analysis of zinc-substituted hydroxyapatites, Acta Biomater., 5, 3141, 10.1016/j.actbio.2009.04.014
Bigi, 1997, Isomorphous substitutions in β-tricalcium phosphate: The different effects of zinc and strontium, J. Inorg. Biochem., 66, 259, 10.1016/S0162-0134(96)00219-X
Zhao, 2017, Characterization, dissolution, and solubility of Zn-substituted hydroxylapatites [(ZnxCa1−x)5(PO4)3OH] at 25°C, J. Chem., 2017, 4619159, 10.1155/2017/4619159
van Rijt, 2021, Stability-limited ion-exchange of calcium with zinc in biomimetic hydroxyapatite, Mater. Des., 207, 10.1016/j.matdes.2021.109846
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A., 32, 751, 10.1107/S0567739476001551
McKeown, 2000, Local environment of Zn in zirconium borosilicate glasses determined by X-ray absorption spectroscopy, J. Non. Cryst. Solids., 261, 155, 10.1016/S0022-3093(99)00588-8
Biscardi, 1999, Reaction pathways and rate-determining steps in reactions of alkanes on H-ZSM5 and Zn/H-ZSM5 catalysts, J. Catal., 182, 117, 10.1006/jcat.1998.2312
Tang, 2009, Zinc incorporation into hydroxylapatite, Biomaterials, 30, 2864, 10.1016/j.biomaterials.2009.01.043
Takatsuka, 2005, X-Ray absorption fine structure analysis of the local environment of zinc in dentine treated with zinc compounds, Eur. J. Oral Sci., 113, 180, 10.1111/j.1600-0722.2005.00194.x
Ravel, 2007, The difficult chore of measuring coordination by EXAFS, AIP Conf. Proc., 882, 150, 10.1063/1.2644458
Wilson, 1975, Ionomer cements, Br. Polym. J., 7, 279, 10.1002/pi.4980070502
Griffin, 1999, Influence of glass composition on the properties of glass polyalkenoate cements. Part I: Influence of aluminium to silicon ratio, Biomaterials, 20, 1579, 10.1016/S0142-9612(99)00058-7
Gordon, 2012, Atom probe tomography of apatites and bone-type mineralized tissues, ACS Nano, 6, 10667, 10.1021/nn3049957
Cuisinier, 1995, Structural analyses of carbonate-containing apatite samples related to mineralized tissues, J. Mater. Sci. Mater. Med., 6, 85, 10.1007/BF00120413
Mayer, 2000, Dissolution studies of Zn-containing carbonated hydroxyapatites, J. Cryst. Growth., 219, 98, 10.1016/S0022-0248(00)00608-4
Bentov, 2021, Reinforcement of bio-apatite by zinc substitution in the incisor tooth of a prawn, Acta Biomater., 120, 116, 10.1016/j.actbio.2020.07.039