Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cải thiện quy trình thu giữ CO2 bằng cách điều chỉnh enthalpy phản ứng của dung môi ion lỏng dựa trên anion N-Heterocyclic Aprotic
Tóm tắt
Một loạt các dung môi ion lỏng dựa trên anion N-Heterocyclic Aprotic (AHA-ILs) đã được thiết kế thông qua các phép tính hóa học lượng tử DFT/COSMO-RS để tối ưu hóa hiệu suất của chúng như là các chất hấp thụ hóa học trong các quy trình thu giữ CO2 quy mô công nghiệp bằng cách điều chỉnh enthalpy phản ứng. Năm nhóm thế khác nhau được đặt ở nhiều vị trí trên tám vòng dị vòng khác nhau đã được xem xét để bao trùm một dải rộng các giá trị enthalpy phản ứng CO2-IL. Mười hai AHA-ILs đại diện dựa trên cation [P66614] với giá trị enthalpy phản ứng từ -30 đến -64 kJ/mol đã được đánh giá trong các quy trình thu giữ CO2 hóa học sau đốt, từ biogas và trước đốt thông qua mô phỏng dựa trên tỷ lệ Aspen Plus. Các AHA-ILs cho thấy enthalpy phản ứng CO2 giữa -43 và -54 kJ/mol đã được tìm thấy là tối thiểu hóa cả tiêu thụ dung môi và năng lượng và do đó làm giảm chi phí thiết bị và vận hành trong tất cả các hệ thống thu giữ CO2 được nghiên cứu, vì nhiệt dung vòng đã được tối ưu hóa thành công nhờ vào việc lựa chọn đúng đắn enthalpy phản ứng. Một số AHA-ILs chưa tổng hợp, như [P66614][4-BrPyra] (-49.3 kJ/mol), được đề xuất là những chất hấp thụ hóa học CO2 đầy hứa hẹn dựa trên hiệu suất được cải thiện của chúng trong các quy trình thu giữ sau đốt, từ biogas và trước đốt theo phân tích kinh tế-kỹ thuật hiện tại.
Từ khóa
#Thu giữ CO2 #Dung môi ion lỏng #Ước lượng chi phí #Mô phỏng quy trình #COSMO-based/AspenTài liệu tham khảo
[1] L. Lombardi G. Francini Techno-economic and environmental assessment of the main biogas upgrading technologies Renew. Energy 156 2020 440 458 L. Lombardi, G. Francini, Techno-economic and environmental assessment of the main biogas upgrading technologies, Renew. Energy156 (2020) 440–458.
[2] C. Antonini K. Treyer A. Streb M. van der Spek C. Bauer M. Mazzotti Hydrogen production from natural gas and biomethane with carbon capture and storage – a techno-environmental analysis Sustain. Energy Fuels 4 2020 2967 2986 C. Antonini, K. Treyer, A. Streb, M. van der Spek, C. Bauer, M. Mazzotti, Hydrogen production from natural gas and biomethane with carbon capture and storage – a techno-environmental analysis, Sustain. Energy Fuels4 (2020) 2967–2986.
[3] M. Bui C.S. Adjiman A. Bardow E.J. Anthony A. Boston S. Brown P.S. Fennell S. Fuss A. Galindo L.A. Hackett J.P. Hallett H.J. Herzog G. Jackson J. Kemper S. Krevor G.C. Maitland M. Matuszewski I.S. Metcalfe C. Petit G. Puxty J. Reimer D.M. Reiner E.S. Rubin S.A. Scott N. Shah B. Smit J.P.M. Trusler P. Webley J. Wilcox N. Mac Dowell Carbon capture and storage (CCS): the way forward Energy Environ. Sci. 11 2018 1062 1176 M. Bui, C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, P.S. Fennell, S. Fuss, A. Galindo, L.A. Hackett, J.P. Hallett, H.J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.C. Maitland, M. Matuszewski, I.S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D.M. Reiner, E.S. Rubin, S.A. Scott, N. Shah, B. Smit, J.P.M. Trusler, P. Webley, J. Wilcox, N. Mac Dowell, Carbon capture and storage (CCS): the way forward, Energy Environ. Sci.11 (2018) 1062–1176.
[4] W. Gao S. Liang R. Wang Q. Jiang Y. Zhang Q. Zheng B. Xie C.Y. Toe X. Zhu J. Wang L. Huang Y. Gao Z. Wang C. Jo Q. Wang L. Wang Y. Liu B. Louis J. Scott A.-.C. Roger R. Amal H. He S.-.E. Park Industrial carbon dioxide capture and utilization: state of the art and future challenges Chem. Soc. Rev. 49 2020 8584 8686 W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang, Q. Zheng, B. Xie, C.Y. Toe, X. Zhu, J. Wang, L. Huang, Y. Gao, Z. Wang, C. Jo, Q. Wang, L. Wang, Y. Liu, B. Louis, J. Scott, A.-.C. Roger, R. Amal, H. He, S.-.E. Park, Industrial carbon dioxide capture and utilization: state of the art and future challenges, Chem. Soc. Rev.49 (2020) 8584–8686.
[5] F. Vega F.M. Baena-Moreno L.M. Gallego Fernández E. Portillo B. Navarrete Z. Zhang Current status of CO2 chemical absorption research applied to CCS: towards full deployment at industrial scale Appl. Energy 260 2020 114313 F. Vega, F.M. Baena-Moreno, L.M. Gallego Fernández, E. Portillo, B. Navarrete, Z. Zhang, Current status of CO2 chemical absorption research applied to CCS: towards full deployment at industrial scale, Appl. Energy260 (2020) 114313.
[6] S.E. Zanco J.-.F. Pérez-Calvo A. Gasós B. Cordiano V. Becattini M. Mazzotti Postcombustion CO2 capture: a comparative techno-economic assessment of three technologies using a solvent, an adsorbent, and a membrane ACS Eng. Au 1 2021 50 72 S.E. Zanco, J.-.F. Pérez-Calvo, A. Gasós, B. Cordiano, V. Becattini, M. Mazzotti, Postcombustion CO2 capture: a comparative techno-economic assessment of three technologies using a solvent, an adsorbent, and a membrane, ACS Eng. Au1 (2021) 50–72.
[7] M.T. Mota-Martinez J.P. Hallett N.Mac Dowell Solvent selection and design for CO2 capture - how we might have been missing the point Sustain. Energy Fuels 1 2017 2078 2090 M.T. Mota-Martinez, J.P. Hallett, N. Mac Dowell, Solvent selection and design for CO2 capture - how we might have been missing the point, Sustain. Energy Fuels1 (2017) 2078–2090.
[8] M.T. Mota-Martinez P. Brandl J.P. Hallett N.Mac Dowell Challenges and for the utilisation of ionic liquids as solvents for CO2 capture Mol. Syst. Des. Eng. 3 2018 560 571 M.T. Mota-Martinez, P. Brandl, J.P. Hallett, N. Mac Dowell, Challenges and for the utilisation of ionic liquids as solvents for CO2 capture, Mol. Syst. Des. Eng.3 (2018) 560–571.
[9] S. Valiani N. Tahouni M.H. Panjeshahi Optimization of pre-combustion capture for thermal power plants using Pinch analysis Energy 119 2017 950 960 S. Valiani, N. Tahouni, M.H. Panjeshahi, Optimization of pre-combustion capture for thermal power plants using Pinch analysis, Energy119 (2017) 950–960.
[10] F. Ortloff M. Roschitz M. Ahrens F. Graf T. Schubert T. Kolb Characterization of functionalized ionic liquids for a new quasi-isothermal chemical biogas upgrading process Sep. Purif. Technol. 195 2018 413 430 F. Ortloff, M. Roschitz, M. Ahrens, F. Graf, T. Schubert, T. Kolb, Characterization of functionalized ionic liquids for a new quasi-isothermal chemical biogas upgrading process, Sep. Purif. Technol.195 (2018) 413–430.
[11] C.J. Clarke W.-.C. Tu O. Levers A. Bröhl J.P. Hallett Green and sustainable solvents in chemical processes Chem. Rev. 118 2018 747 800 C.J. Clarke, W.-.C. Tu, O. Levers, A. Bröhl, J.P. Hallett, Green and sustainable solvents in chemical processes, Chem. Rev.118 (2018) 747–800.
[12] R.F. Zheng D. Barpaga P.M. Mathias D. Malhotra P.K. Koech Y. Jiang M. Bhakta M. Lail A.V. Rayer G.A. Whyatt C.J. Freeman A.J. Zwoster K.K. Weitz D.J. Heldebrant A single-component water-lean post-combustion CO2 capture solvent with exceptionally low operational heat and total costs of capture – comprehensive experimental and theoretical evaluation Energy Environ. Sci. 13 2020 4106 4113 R.F. Zheng, D. Barpaga, P.M. Mathias, D. Malhotra, P.K. Koech, Y. Jiang, M. Bhakta, M. Lail, A.V. Rayer, G.A. Whyatt, C.J. Freeman, A.J. Zwoster, K.K. Weitz, D.J. Heldebrant, A single-component water-lean post-combustion CO2 capture solvent with exceptionally low operational heat and total costs of capture – comprehensive experimental and theoretical evaluation, Energy Environ. Sci.13 (2020) 4106–4113.
[13] D. Hospital-Benito J. Lemus C. Moya R. Santiago V.R. Ferro J. Palomar Techno-economic feasibility of ionic liquids-based CO2 chemical capture processes Chem. Eng. J. 407 2021 127196 D. Hospital-Benito, J. Lemus, C. Moya, R. Santiago, V.R. Ferro, J. Palomar, Techno-economic feasibility of ionic liquids-based CO2 chemical capture processes, Chem. Eng. J.407 (2021) 127196.
[14] C. Moya R. Santiago D. Hospital-Benito J. Lemus J. Palomar Design of biogas upgrading processes based on ionic liquids Chem. Eng. J. 428 2022 132103 C. Moya, R. Santiago, D. Hospital-Benito, J. Lemus, J. Palomar, Design of biogas upgrading processes based on ionic liquids, Chem. Eng. J.428 (2022) 132103.
[15] J. de Riva V. Ferro C. Moya M.A. Stadtherr J.F. Brennecke J. Palomar Aspen Plus supported analysis of the post-combustion CO2 capture by chemical absorption using the P-2228 CNPyr and P-66614 CNPyr AHA ionic liquids Int. J. Greenhouse Gas Control 78 2018 94 102 J. de Riva, V. Ferro, C. Moya, M.A. Stadtherr, J.F. Brennecke, J. Palomar, Aspen Plus supported analysis of the post-combustion CO2 capture by chemical absorption using the P-2228 CNPyr and P-66614 CNPyr AHA ionic liquids, Int. J. Greenhouse Gas Control78 (2018) 94–102.
[16] B. Gurkan B.F. Goodrich E.M. Mindrup L.E. Ficke M. Massel S. Seo T.P. Senftle H. Wu M.F. Glaser J.K. Shah E.J. Maginn J.F. Brennecke W.F. Schneider Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture J. Phys. Chem. Lett. 1 2010 3494 3499 B. Gurkan, B.F. Goodrich, E.M. Mindrup, L.E. Ficke, M. Massel, S. Seo, T.P. Senftle, H. Wu, M.F. Glaser, J.K. Shah, E.J. Maginn, J.F. Brennecke, W.F. Schneider, Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture, J. Phys. Chem. Lett.1 (2010) 3494–3499.
[17] G.M. Avelar Bonilla O. Morales-Collazo J.F. Brennecke Effect of water on CO2 capture by aprotic heterocyclic anion (AHA) ionic liquids ACS Sustain. Chem. Eng. 7 2019 16858 16869 G.M. Avelar Bonilla, O. Morales-Collazo, J.F. Brennecke, Effect of water on CO2 capture by aprotic heterocyclic anion (AHA) ionic liquids, ACS Sustain. Chem. Eng.7 (2019) 16858–16869.
[18] Q.R. Sheridan W.F. Schneider E.J. Maginn Role of Molecular modeling in the development of CO2-reactive ionic liquids Chem. Rev. 118 2018 5242 5260 Q.R. Sheridan, W.F. Schneider, E.J. Maginn, Role of Molecular modeling in the development of CO2-reactive ionic liquids, Chem. Rev.118 (2018) 5242–5260.
[19] S. Seo M. Quiroz-Guzman M.A. DeSilva T.B. Lee Y. Huang B.F. Goodrich W.F. Schneider J.F. Brennecke Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO2 capture J. Phys. Chem. B 118 2014 5740 5751 S. Seo, M. Quiroz-Guzman, M.A. DeSilva, T.B. Lee, Y. Huang, B.F. Goodrich, W.F. Schneider, J.F. Brennecke, Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO2 capture, J. Phys. Chem. B118 (2014) 5740–5751.
[20] C. Moya D. Hospital-Benito R. Santiago J. Lemus J. Palomar Prediction of CO2 chemical absorption isotherms for ionic liquid design by DFT/COSMO-RS calculations Chem. Eng. J. Adv. 4 2020 100038 C. Moya, D. Hospital-Benito, R. Santiago, J. Lemus, J. Palomar, Prediction of CO2 chemical absorption isotherms for ionic liquid design by DFT/COSMO-RS calculations, Chem. Eng. J. Adv.4 (2020) 100038.
[21] Y. Huang G. Cui H. Wang Z. Li J. Wang Tuning ionic liquids with imide-based anions for highly efficient CO2 capture through enhanced cooperations J. CO2 Util. 28 2018 299 305 Y. Huang, G. Cui, H. Wang, Z. Li, J. Wang, Tuning ionic liquids with imide-based anions for highly efficient CO2 capture through enhanced cooperations, J. CO2 Util.28 (2018) 299–305.
[22] B. Hong L.D. Simoni J.E. Bennett J.F. Brennecke M.A. Stadtherr Simultaneous process and material design for aprotic N-heterocyclic anion ionic liquids in postcombustion CO2 Capture Ind. Eng. Chem. Res. 55 2016 8432 8449 B. Hong, L.D. Simoni, J.E. Bennett, J.F. Brennecke, M.A. Stadtherr, Simultaneous process and material design for aprotic N-heterocyclic anion ionic liquids in postcombustion CO2 Capture, Ind. Eng. Chem. Res.55 (2016) 8432–8449.
[23] D. Hospital-Benito J. Lemus C. Moya R. Santiago J. Palomar Process analysis overview of ionic liquids on CO2 chemical capture Chem. Eng. J. 390 2020 124509 D. Hospital-Benito, J. Lemus, C. Moya, R. Santiago, J. Palomar, Process analysis overview of ionic liquids on CO2 chemical capture, Chem. Eng. J.390 (2020) 124509.
[24] K. Seo C. Tsay T.F. Edgar M.A. Stadtherr M. Baldea Economic optimization of carbon capture processes using ionic liquids: toward flexibility in capture rate and feed composition ACS Sustain. Chem. Eng. 9 2021 4823 4839 K. Seo, C. Tsay, T.F. Edgar, M.A. Stadtherr, M. Baldea, Economic optimization of carbon capture processes using ionic liquids: toward flexibility in capture rate and feed composition, ACS Sustain. Chem. Eng.9 (2021) 4823–4839.
[25] S. Seo M.A. DeSilva H. Xia J.F. Brennecke Effect of cation on physical properties and CO2 solubility for phosphonium-based ionic liquids with 2-cyanopyrrolide anions J. Phys. Chem. B 119 2015 11807 11814 S. Seo, M.A. DeSilva, H. Xia, J.F. Brennecke, Effect of cation on physical properties and CO2 solubility for phosphonium-based ionic liquids with 2-cyanopyrrolide anions, J. Phys. Chem. B119 (2015) 11807–11814.
[26] H. Zhai E.S. Rubin Systems analysis of ionic liquids for post-combustion CO2 capture at coal-fired power plants Energy Procedia 63 2014 1321 1328 H. Zhai, E.S. Rubin, Systems analysis of ionic liquids for post-combustion CO2 capture at coal-fired power plants, Energy Procedia63 (2014) 1321–1328.
[27] V.R. Ferro C. Moya D. Moreno R. Santiago J. de Riva G. Pedrosa M. Larriba I. Diaz J. Palomar Enterprise ionic liquids database (ILUAM) for use in aspen ONE programs suite with COSMO-based property methods Ind. Eng. Chem. Res. 57 2018 980 989 V.R. Ferro, C. Moya, D. Moreno, R. Santiago, J. de Riva, G. Pedrosa, M. Larriba, I. Diaz, J. Palomar, Enterprise ionic liquids database (ILUAM) for use in aspen ONE programs suite with COSMO-based property methods, Ind. Eng. Chem. Res.57 (2018) 980–989.
[28] S.-.T. Lin S.I. Sandler A priori phase equilibrium prediction from a segment contribution solvation model Ind. Eng. Chem. Res. 41 2002 899 913 S.-.T. Lin, S.I. Sandler, A priori phase equilibrium prediction from a segment contribution solvation model, Ind. Eng. Chem. Res.41 (2002) 899–913.
[29] G.D. Ulrich P.T. Vasudevan Chemical Engineering Process Design and Economics: A Practical Guide 2004 Process Pub G.D. Ulrich, P.T. Vasudevan, Chemical Engineering Process Design and Economics: A Practical Guide, Process Pub.2004.
[30] K. Xin F. Gallucci M.v.S. Annaland Optimization of solvent properties for post-combustion CO2 capture using process simulation Int. J. Greenhouse Gas Control 99 2020 103080 K. Xin, F. Gallucci, M.v.S. Annaland, Optimization of solvent properties for post-combustion CO2 capture using process simulation, Int. J. Greenhouse Gas Control99 (2020) 103080.
[31] B.E. Gurkan T.R. Gohndrone M.J. McCready J.F. Brennecke Reaction kinetics of CO2 absorption in to phosphonium based anion-functionalized ionic liquids Phys. Chem. Chem. Phys. 15 2013 7796 7811 B.E. Gurkan, T.R. Gohndrone, M.J. McCready, J.F. Brennecke, Reaction kinetics of CO2 absorption in to phosphonium based anion-functionalized ionic liquids, Phys. Chem. Chem. Phys.15 (2013) 7796–7811.
null
[33] B. Xue Y. Yu J. Chen X. Luo M. Wang A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations Int. J. Coal Sci. Technol. 4 2017 15 24 B. Xue, Y. Yu, J. Chen, X. Luo, M. Wang, A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations, Int. J. Coal Sci. Technol.4 (2017) 15–24.
[34] T.E. Akinola E. Oko M. Wang Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation Fuel 236 2019 135 146 T.E. Akinola, E. Oko, M. Wang, Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation, Fuel236 (2019) 135–146.
[35] J. Lemus R. Santiago D. Hospital-Benito T. Welton J.P. Hallett J. Palomar Process analysis of ionic liquid-based blends as H2S absorbents: search for thermodynamic/kinetic synergies ACS Sustain. Chem. Eng. 9 2021 2080 2088 J. Lemus, R. Santiago, D. Hospital-Benito, T. Welton, J.P. Hallett, J. Palomar, Process analysis of ionic liquid-based blends as H2S absorbents: search for thermodynamic/kinetic synergies, ACS Sustain. Chem. Eng.9 (2021) 2080–2088.