Improvement in the thermal shock resistance of alumina through the addition of submicron-sized aluminium nitride particles

Journal of the European Ceramic Society - Tập 24 - Trang 2293-2301 - 2004
Marı́a Isabel Nieto1, Rafael Martı́nez1, Leo Mazerolles2, Carmen Baudı́n1
1Instituto de Cerámica y Vidrio (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
2Centre d'Etudes de Chimie Metallurgique, CNRS UPR 2801, 94407 Vitry Cedex, France

Tài liệu tham khảo

Hasselman, 1970, Thermal stress resistance parameters for brittle refractory ceramics: a compendium, Am. Ceram. Soc. Bull., 49, 1033 Mezquita, 2001, Influence of mullite additions on thermal shock resistance of dense alumina materials. part II: thermal properties and thermal shock behaviour, Brit. Ceram. Trans., 100, 246, 10.1179/bct.2001.100.6.246 Uribe, 2003, Influence of a dispersion of aluminum titanate particles of controlled size on the thermal shock resistance of alumina, J. Am. Ceram. Soc., 86, 846, 10.1111/j.1151-2916.2003.tb03385.x Aldridge, 1998, The thermal shock behaviour of ductile particle toughened alumina composites, J. Eur. Ceram. Soc., 19, 1769, 10.1016/S0955-2219(98)00270-2 Aldridge, 2001, The thermal shock behavior of iron-particle-toughened alumina, J. Am. Ceram. Soc., 84, 603, 10.1111/j.1151-2916.2001.tb00706.x Sbaizero, 2003, Influence of molybdenum particles on thermal shock resistance of alumina matrix ceramics, Mater. Sci. Eng., A343, 273, 10.1016/S0921-5093(02)00370-2 Wang, 2001, The thermal shock behavior of alumina-cooper composite, Mater. Res. Bull., 36, 932 Wang, 2001, Influence of tungsten carbide particles on resistance of alumina matrix ceramics to thermal shock, J. Eur. Ceram. Soc., 21, 1213, 10.1016/S0955-2219(00)00325-3 Kim, 1996, Phase reaction and sintering behavior in the pseudoternary system AlN–Y2O3–Al2O3, J. Am. Ceram. Soc., 79, 2645, 10.1111/j.1151-2916.1996.tb09029.x McCauley, 1983, High temperature reactions and microstructures in the Al2O3–AlN system, 111 McCauley, 1979, Phase relations and reaction sintering of transparent cubic aluminum oxynitride spinel (ALON), J. Am. Ceram. Soc., 62, 476, 10.1111/j.1151-2916.1979.tb19109.x Willems, 1992, Thermodynamics of AlON I: stability at lower temperatures, J. Eur. Ceram. Soc., 10, 327, 10.1016/0955-2219(92)90088-U Kim, 2001, Reaction sintering microstructural development in the system Al2O3–AlN, J. Eur. Ceram. Soc., 21, 2383, 10.1016/S0955-2219(01)00200-X Kieffer, 1976, Propriétés physiques et mécaniques de céramiques AlN–Al2O3 obtenues par compression à chaud, Rev. Int. Htes. Temp. et Réfract., 13, 97 Boch, 1982, Sintering, oxidation and mechanical properties of hot pressed aluminum nitride, Ceramics International, 8, 34, 10.1016/0272-8842(82)90013-X Graham, 1988, Elastic properties of polycrystalline aluminum oxynitride spinel and their dependence on pressure, temperature, and composition, J. Am. Ceram. Soc., 71, 807, 10.1111/j.1151-2916.1988.tb07527.x Van Tendeloo, 1983, Characterization of AlN ceramics containing long-period polytypes, J. Mater. Sci., 18, 525, 10.1007/BF00560642 Quinn, 1984, Thermomechanical properties of aluminum oxynitride spinel, Ceram. Bull., 63, 723 Slack, 1987, The intrinsic thermal conductivity of AlN, J. Phys. Chem. Solids., 48, 641, 10.1016/0022-3697(87)90153-3 Enloe, 1991, Microstructural effects on the thermal conductivity of polycrystalline aluminum nitride, J. Am. Ceram. Soc., 74, 2214, 10.1111/j.1151-2916.1991.tb08287.x Horiguchi, A., Ueno, F., Kasori, M., Schinozaki, K. and Tsuge, A., Effect of sintering atmosphere on thermal conductivity and its microstructure for an AlN ceramic. In Proc. 25th Symp. on the Basic Science of Ceramics;, Yogyo Kyokai ID03, 1987, pp.155. Virkar, 1989, Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride, J. Am. Ceram. Soc., 72, 2031, 10.1111/j.1151-2916.1989.tb06027.x Buhr, 1991, Phase composition, oxygen content, and thermal conductivity of AlN(Y2O3) ceramics, J. Am. Ceram. Soc., 74, 718, 10.1111/j.1151-2916.1991.tb06914.x Kim, 1996, Morphological effect of second phase on the thermal conductivity of AlN ceramics, J. Am. Ceram. Soc., 79, 1066, 10.1111/j.1151-2916.1996.tb08549.x Sternitzke, 1994, EELS study of oxygen diffusion in aluminum nitride, J. Am. Ceram. Soc., 77, 737, 10.1111/j.1151-2916.1994.tb05358.x Jackson, 1997, High-thermal-conductivity aluminum nitride ceramics: the effect of thermodynamic, kinetic, and microstructural factors, J. Am. Ceram. Soc., 80, 1421, 10.1111/j.1151-2916.1997.tb03000.x Corbin, 1989, State of the art aluminum oxynitride spinel: a review, J. Eur. Ceram. Soc., 5, 143, 10.1016/0955-2219(89)90030-7 Turpin-Launay, 1983, Nouveau matériau céramique composite contenant de l'alumine: l'aluminalon, L'Industrie Ceram., 772, 343 Orange, G., Turpin-Launay, D., Goeuriot, P., Fantozzi, G. and Thevenot, F. Mechanical behaviour of a Al2O3–AlON composite ceramic material (Aluminalon). In Science of Ceramics 12. Ed. Vincenzini, 1983, pp. 661–666. Ma, 2000, Effect of aluminum nitride on properties of cordierite, J. Mater. Sci., 35, 4137, 10.1023/A:1004858909771 Fargas, 2003, Thermal shock resistance of yttria-stabilized zirconia with Palmqvist indentation cracks, J. Eur. Ceram. Soc., 23, 107, 10.1016/S0955-2219(02)00065-1 Collin, 2002, The morphology of thermal cracks in brittle materials, J. Eur. Ceram. Soc., 22, 435, 10.1016/S0955-2219(01)00319-3 Osterstock, 1996, Influence of grain size on the toughness and thermal shock resistance of polycristalline YBa2Cu3O7-δ, J. Eur. Ceram. Soc., 16, 687, 10.1016/0955-2219(95)00190-5 Tancret, 1997, The vickers indentation technique used to evaluate the thermal shock resistance of brittle materials, Scripta Mater., 37, 443, 10.1016/S1359-6462(97)00106-1 Collin, 2000, Analysis and prediction of thermal shock in brittle materials, Acta Mater., 48, 1655, 10.1016/S1359-6454(00)00011-2 Lee, 2002, Thermal shock resistance of silicon nitrides using an indentation-quench test, J. Am. Ceram. Soc., 85, 279, 10.1111/j.1151-2916.2002.tb00083.x Pettersson, 2002, Parameters for measuring the thermal shock of ceramic materials with an indentation-quench method, J. Eur. Ceram. Soc., 22, 1883, 10.1016/S0955-2219(01)00504-0 Anstis, 1981, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64, 533, 10.1111/j.1151-2916.1981.tb10320.x Lawn, 1975, Indentation fracture: principles and applications, J. Mater. Sci., 10, 1049, 10.1007/BF00823224 Marshall, 1979, Residual stress effects in sharp contact cracking. Part 1: indentation fracture principles, J. Mater. Sci., 14, 2001, 10.1007/BF00551043 Kingery, W. D., Bowen, H. K., Uhlmann, D. R. (eds), Thermal and compositional stresses, Introduction to Ceramics, 2nd ed. John Wiley & Sons, New York, USA, 1976, pp. 816–846. Becher, 1981, Effect of water bath temperature on the thermal shock of Al2O3, J. Am. Ceram. Soc., 64, C, 17.C.18, 10.1111/j.1151-2916.1981.tb09544.x 1974 Miranzo, 1984, Elastic-plastic indentation in ceramics: a fracture toughness determination method, Ceramics International, 10, 147, 10.1016/0272-8842(84)90005-1 Kingery, W. D., Bowen, H. K., Uhlmann, D. R. (eds), Thermal properties, Introduction to Ceramics, 2nd ed. John Wiley & Sons, New York, USA, 1976, pp. 583–645. Launay, 1984, Reaction-sintering of an Al2O3–AlN composite determination of mechanical properties, J. Mater. Sci. Letters, 3, 890, 10.1007/BF00719579 Schlichting, 2001, Thermal conductivity of dense and porous ytria-stabilized zirconia, J. Mater. Sci., 36, 3003, 10.1023/A:1017970924312 Fett, 1995, An analysis of the residual stress intensity factor of Vickers indentation cracks, Eng. Frac. Mec., 52, 773, 10.1016/0013-7944(95)00054-Y Osterstock, 1998, Quantification of quenching stresses and heat transfer, Ann. Chim. Sci. Mat., 23, 143, 10.1016/S0151-9107(98)80042-1 Gong, 1992, Analysis for strength degradation of indented specimens due to thermal shock, 605 Sato, 1987, Thermal shock resistance of yttria-doped tetragonal zirconia polycrystals: effect solvent in quenching test, J. Mater. Sci. Letters, 6, 1287, 10.1007/BF01794592