Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics. New York: Academic Press, 1971
Safari A, Akdogan E K, eds. Piezoelectric and Acoustic Materials for Transducer Applications. New York: Springer, 2008
Tichý J, Erhart J, Kittinger E, et al. Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials. Berlin: Springer, 2010
Uchino K. Ferroelectric Devices. 2nd ed. New York: CRC Press, 2009
Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature, 2004, 432(7013): 84–87
Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126
Panda P K. Review: environmental friendly lead-free piezoelectric materials. Journal of Materials Science, 2009, 44(19): 5049–5062
Rodel J, Jo W, Seifert K T P, et al. Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177
Rodel J, Webber K G, Dittmer R, et al. Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 2015, 35(6): 1659–1681
Li J F, Wang K, Zhu F Y, et al. (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. Journal of the American Ceramic Society, 2013, 96(12): 3677–3696
Wu J, Xiao D, Zhu J. Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews, 2015, 115(7): 2559–2595
Wang X, Wu J, Xiao D, et al. Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. Journal of the American Chemical Society, 2014, 136(7): 2905–2910
Wang X, Wu J, Xiao D, et al. Large d 33 in (K,Na)(Nb,Ta,Sb)O3–(Bi,Na,K)ZrO3 lead-free ceramics. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(12): 4122–4126
Matsubara M, Yamaguchi T, Kikuta K, et al. Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Japanese Journal of Applied Physics, 2004, 43(10): 7159–7163
Park S H, Ahn C W, Nahm S, et al. Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(8B): L1072–L1074
Matsubara M, Yamaguchi T, Kikuta K, et al. Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Japanese Journal of Applied Physics, 2005, 44(1A): 258–263
Matsubara M, Yamaguchi T, Sakamoto W, et al. Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of the American Ceramic Society, 2005, 88(5): 1190–1196
Park H Y, Choi J Y, Choi M K, et al. Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5) NbO3 lead-free piezoelectric ceramics. Journal of the American Ceramic Society, 2008, 91(7): 2374–2377
Rubio-Marcos F, Romero J J, Navarro-Rojero MG, et al. Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. Journal of the European Ceramic Society, 2009, 29(14): 3045–3052
Alkoy E M, Papila M. Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics. Ceramics International, 2010, 36(6): 1921–1927
Rubio-Marcos F, Marchet P, Vendrell X, et al. Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. Journal of Alloys and Compounds, 2011, 509(35): 8804–8811
Chen K P, Zhang F L, Zhou J Q, et al. Effect of borax addition on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Ceramics International, 2015, 41(8): 10232–10236
Chen K P, Zhou J Q, Zhang F L, et al. Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2015, 98(6): 1698–1701
Chen K P, Zhang F L, Jiao Y L, et al. Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2016, 99(5): 1681–1686
Feizpour M, Ebadzadeh T, Jenko D. Synthesis and characterization of lead-free piezoelectric (K0.50Na0.50)NbO3 powder produced at lower calcination temperatures: A comparative study with a calcination temperature of 850°C. Journal of the European Ceramic Society, 2016, 36(7): 1595–1603
Chen K P, Tang J, Chen Y. Compositional inhomogeneity and segregation in (K0.5Na0.5)NbO3 ceramics. Ceramics International, 2016, 42(8): 9949–9954
Chen K P, Zhang F L, Li D S, et al. Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42(2): 2899–2903
Murthy M K, Aguayo J. Studies in germanium oxide systems: II, phase equilibria in the system Na2O–GeO2. Journal of the American Ceramic Society, 1964, 47(9): 444–447
Murthy M K, Long L, Ip J. Studies in germanium oxide systems: IV, phase equilibria in the system K2O–GeO2. Journal of the American Ceramic Society, 1968, 51(11): 661–662
Bomlai P, Wichianrat P, Muensit S, et al. Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO3 powders. Journal of the American Ceramic Society, 2007, 90(5): 1650–1655
Guo Y P, Kakimoto K, Ohsato H. Structure and electrical properties of lead-free (Na0.5K0.5)NbO3–BaTiO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(9B): 6662–6666
Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Applied Physics Letters, 2007, 90(26): 262903
Dai Y J, Zhang X W, Chen K P. Morphotropic phase boundary and electrical properties of K1–xNaxNbO3 lead-free ceramics. Applied Physics Letters, 2009, 94(4): 042905