Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping

Yajing Zhao1, Yan Chen2, Kepi Chen1
1School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, China
2Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, USA

Tóm tắt

In this paper, the effects of doping with GeO2 on the synthesis temperature, phase structure and morphology of (K0.5Na0.5)NbO3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powders with good crystallinity and compositional homogeneity can be obtained after calcination at up to 900°C for 2 h. Introducing 0.5 mol.% GeO2 into the starting mixture improved the synthesis of the KNN powders and allowed the calcination temperature to be decreased to 800°C, which can be ascribed to the formation of the liquid phase during the synthesis.

Từ khóa


Tài liệu tham khảo

Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics. New York: Academic Press, 1971

Safari A, Akdogan E K, eds. Piezoelectric and Acoustic Materials for Transducer Applications. New York: Springer, 2008

Tichý J, Erhart J, Kittinger E, et al. Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials. Berlin: Springer, 2010

Uchino K. Ferroelectric Devices. 2nd ed. New York: CRC Press, 2009

Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature, 2004, 432(7013): 84–87

Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126

Panda P K. Review: environmental friendly lead-free piezoelectric materials. Journal of Materials Science, 2009, 44(19): 5049–5062

Rodel J, Jo W, Seifert K T P, et al. Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177

Rodel J, Webber K G, Dittmer R, et al. Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 2015, 35(6): 1659–1681

Li J F, Wang K, Zhu F Y, et al. (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. Journal of the American Ceramic Society, 2013, 96(12): 3677–3696

Wu J, Xiao D, Zhu J. Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews, 2015, 115(7): 2559–2595

Wang X, Wu J, Xiao D, et al. Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. Journal of the American Chemical Society, 2014, 136(7): 2905–2910

Wang X, Wu J, Xiao D, et al. Large d 33 in (K,Na)(Nb,Ta,Sb)O3–(Bi,Na,K)ZrO3 lead-free ceramics. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(12): 4122–4126

Matsubara M, Yamaguchi T, Kikuta K, et al. Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Japanese Journal of Applied Physics, 2004, 43(10): 7159–7163

Park S H, Ahn C W, Nahm S, et al. Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(8B): L1072–L1074

Matsubara M, Yamaguchi T, Kikuta K, et al. Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Japanese Journal of Applied Physics, 2005, 44(1A): 258–263

Matsubara M, Yamaguchi T, Sakamoto W, et al. Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of the American Ceramic Society, 2005, 88(5): 1190–1196

Park H Y, Choi J Y, Choi M K, et al. Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5) NbO3 lead-free piezoelectric ceramics. Journal of the American Ceramic Society, 2008, 91(7): 2374–2377

Rubio-Marcos F, Romero J J, Navarro-Rojero MG, et al. Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. Journal of the European Ceramic Society, 2009, 29(14): 3045–3052

Alkoy E M, Papila M. Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics. Ceramics International, 2010, 36(6): 1921–1927

Rubio-Marcos F, Marchet P, Vendrell X, et al. Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. Journal of Alloys and Compounds, 2011, 509(35): 8804–8811

Chen K P, Zhang F L, Zhou J Q, et al. Effect of borax addition on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Ceramics International, 2015, 41(8): 10232–10236

Chen K P, Zhou J Q, Zhang F L, et al. Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2015, 98(6): 1698–1701

Chen K P, Zhang F L, Jiao Y L, et al. Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2016, 99(5): 1681–1686

Feizpour M, Ebadzadeh T, Jenko D. Synthesis and characterization of lead-free piezoelectric (K0.50Na0.50)NbO3 powder produced at lower calcination temperatures: A comparative study with a calcination temperature of 850°C. Journal of the European Ceramic Society, 2016, 36(7): 1595–1603

Chen K P, Tang J, Chen Y. Compositional inhomogeneity and segregation in (K0.5Na0.5)NbO3 ceramics. Ceramics International, 2016, 42(8): 9949–9954

Chen K P, Zhang F L, Li D S, et al. Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42(2): 2899–2903

Murthy M K, Aguayo J. Studies in germanium oxide systems: II, phase equilibria in the system Na2O–GeO2. Journal of the American Ceramic Society, 1964, 47(9): 444–447

Murthy M K, Long L, Ip J. Studies in germanium oxide systems: IV, phase equilibria in the system K2O–GeO2. Journal of the American Ceramic Society, 1968, 51(11): 661–662

Bomlai P, Wichianrat P, Muensit S, et al. Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO3 powders. Journal of the American Ceramic Society, 2007, 90(5): 1650–1655

Guo Y P, Kakimoto K, Ohsato H. Structure and electrical properties of lead-free (Na0.5K0.5)NbO3–BaTiO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(9B): 6662–6666

Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Applied Physics Letters, 2007, 90(26): 262903

Dai Y J, Zhang X W, Chen K P. Morphotropic phase boundary and electrical properties of K1–xNaxNbO3 lead-free ceramics. Applied Physics Letters, 2009, 94(4): 042905