Cải thiện hoạt tính kháng khuẩn của Poly Vinyl Pyrrolidone/Chitosan được bổ sung graphene oxide NPs qua phương pháp bốc bay laser

Springer Science and Business Media LLC - Tập 28 - Trang 1-8 - 2021
Mohammed S. Al Mogbel1, Mohamed T. Elabbasy2,3, Rasha S. Mohamed4, A. E. Ghoniem5, M. F. H. Abd El-Kader6,7, A. A. Menazea8,9
1Medical Laboratory Sciences Department, College of Applied Medical Sciences, Ha’il University, Ha’il, Saudi Arabia
2Public Health Department, College of Public Health and Health Informatics, Ha’il University, Ha’il, Saudi Arabia
3Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
4Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt
5Department of Botany, Faculty of Agriculture, Cairo University, Giza, Egypt
6Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
7Basic Sciences Department, Deanship of Preparatory Year, Ha'il University, Ha'il, Saudi Arabia
8Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, Giza, Egypt
9Spectroscopy Department, Physics Research Institute, National Research Centre, Giza, Egypt

Tóm tắt

Phương pháp bốc bay laser đã được sử dụng để tạo ra các nanocomposite mới từ hỗn hợp Chitosan-Poly (Vinyl Pyrrolidone) (PVP) kết hợp các hạt nano graphene oxide (GONPs) để ứng dụng trong lĩnh vực vi sinh vật. Sự thay đổi trong các tính chất cấu trúc và quang học của Chitosan-PVP nguyên chất sau khi bổ sung graphene oxide đã được nghiên cứu. Kết quả XRD xác nhận sự kết hợp của GO vào hỗn hợp Chitosan/PVP và kết quả FT-IR xác nhận sự tương tác giữa Chitosan-PVP và GO NPs. Dữ liệu UV đã xác nhận rằng Chitosan/PVP/GO NPs sau thời gian bốc bay laser 10 phút có năng lượng khoảng cách băng tần thấp hơn so với các mẫu khác. Hành vi kháng khuẩn của Chitosan/PVP/GO NPs tại hai thời gian bốc bay laser (5 phút và 10 phút) đã được thực hiện chống lại E. coli, P. aeruginosa, S. aureus, B. subtilis và C. Albicans. Hoạt tính kháng khuẩn cho thấy sự cải thiện trong các vùng ức chế, được cải thiện từ 5 ± 0.98 lên 13 ± 0.72 cho E. coli, từ 6 ± 0.56 lên 15 ± 0.84 cho P. aeruginosa, từ 7 ± 0.73 lên 17 ± 0.26 cho S. aureus, từ 4 ± 0.89 lên 15 ± 0.07 cho B. subtilis và từ 3 ± 0.54 lên 8 ± 0.76 cho C. Albicans. Chitosan/PVP/GO NPs cải thiện đáng kể hiệu quả kháng khuẩn. Các thành phần đã chuẩn bị có thể được đề xuất sau khi nghiên cứu thêm để ứng dụng trong lĩnh vực vi sinh vật.

Từ khóa

#Chitosan #Poly Vinyl Pyrrolidone #graphene oxide #bốc bay laser #hoạt tính kháng khuẩn

Tài liệu tham khảo

Poonguzhali R, Basha SK, Kumari VS (2017) Synthesis and characterization of chitosan/poly (vinylpyrrolidone) biocomposite for biomedical application. Polym Bull 74(6):2185–2201 Ahmed MK, Mansour SF, Al-Wafi R, Menazea AA (2020) Composition and design of nanofibrous scaffolds of Mg/Se-hydroxyapatite/graphene oxide@ ε-polycaprolactone for wound healing applications. J Market Res 9(4):7472–7485 Lim JI, Kang MJ, Lee WK (2014) Lotus-leaf-like structured chitosan–polyvinyl pyrrolidone films as an anti-adhesion barrier. Appl Surf Sci 320:614–619 Ahmed MK, Moydeen AM, Ismail AM, El-Naggar ME, Menazea AA, El-Newehy MH (2021) Wound dressing properties of functionalized environmentally biopolymer loaded with selenium nanoparticles. J Mol Struct 1225:129138‏ Menazea AA, Mahmoud KH, Abdel-Rahim FM (2021) Tailoring modifications in the structural, optical, and electrical conductivity properties of poly vinyl pyrrolidone/chitosan doped with vanadium pentoxide nanoparticles using laser ablation technique. Appl Phys A 127(11):1–9 Tajik F, Eslahi N, Rashidi A, Rad MM (2021) Hybrid antibacterial hydrogels based on PVP and keratin incorporated with lavender extract. J Polym Res 28(8):1–10 Abd El-Kader MFH, Elabbasy MT, Ahmed MK, Menazea AA (2021) Structural, morphological features, and antibacterial behavior of PVA/PVP polymeric blends doped with silver nanoparticles via pulsed laser ablation. J Market Res 13:291–300 Sanders WC (2015) Fabrication of polyvinylpyrrolidone micro-/nanostructures utilizing microcontact printing. J Chem Educ 92(11):1908–1912 Menazea AA, Ismail AM, Awwad NS, Ibrahium HA (2020) Physical characterization and antibacterial activity of PVA/Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route. J Market Res 9(5):9598–9606 Ramadass SK, Perumal S, Gopinath A, Nisal A, Subramanian S, Madhan B (2014) Sol–gel assisted fabrication of collagen hydrolysate composite scaffold: A novel therapeutic alternative to the traditional collagen scaffold. ACS Appl Mater Interfaces 6(17):15015–15025 Ahmed MK, Menazea AA, Mansour SF, Al-Wafi R (2020) Differentiation between cellulose acetate and polyvinyl alcohol nanofibrous scaffolds containing magnetite nanoparticles/graphene oxide via pulsed laser ablation technique for tissue engineering applications. J Market Res 9(5):11629–11640 Dara PK, GK, S., Deekonda, K., Rangasamy, A., Mathew, S., & CN, R. (2021) Biomodulation of poly (vinyl alcohol)/starch polymers into composite-based hybridised films: physico-chemical, structural and biocompatibility characterization. J Polym Res 28(7):1–12 Al-Mogbel MS, Elabbasy MT, Menazea AA, Sadek AW, Ahmed MK, Abd El-Kader MFH (2021) Conditions adjustment of polycaprolactone nanofibers scaffolds encapsulated with core shells of Au@ Se via laser ablation for wound healing applications. Spectrochimica Acta Part A: Mol Biomol Spectrosc 259:119899‏ Elabbasy MT, Abd El-Kader MFH, Ismail AM, Menazea AA (2021) Regulating the function of bismuth (III) oxide nanoparticles scattered in Chitosan/Poly (Vinyl Pyrrolidone) by laser ablation on electrical conductivity characterization and antimicrobial activity. J Market Res 10:1348–1354 Menazea AA (2020) One-Pot Pulsed Laser Ablation route assisted copper oxide nanoparticles doped in PEO/PVP blend for the electrical conductivity enhancement. J Market Res 9(2):2412–2422 Menazea AA, Ahmed MK (2020) Nanosecond laser ablation assisted the enhancement of antibacterial activity of copper oxide nano particles embedded though Polyethylene Oxide/Polyvinyl pyrrolidone blend matrix. Radiat Phys Chem 174:108911‏ El Achaby M, Essamlali Y, El Miri N, Snik A, Abdelouahdi K, Fihri A, Solhy A (2014) Graphene oxide reinforced chitosan/polyvinylpyrrolidone polymer bio‐nanocomposites. J Appl Polym Sci 131(22)‏ Archana D, Singh BK, Dutta J, Dutta PK (2013) In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohyd Polym 95(1):530–539 Wang BL, Wang JL, Li DD, Ren KF, Ji J (2012) Chitosan/poly (vinyl pyrollidone) coatings improve the antibacterial properties of poly (ethylene terephthalate). Appl Surf Sci 258(20):7801–7808 Yeh JT, Chen CL, Huang KS, Nien YH, Chen JL, Huang PZ (2006) Synthesis, characterization, and application of PVP/chitosan blended polymers. J Appl Polym Sci 101(2):885–891 Hong Y, Chirila TV, Vijayasekaran S, Shen W, Lou X, Dalton PD (1998) Biodegradation in vitro and retention in the rabbit eye of crosslinked poly (1-vinyl-2-pyrrolidinone) hydrogel as a vitreous substitute. J Biomed Mater Res: An Official J Soc Biomater, Jpn Soc Biomater, Australian Soc Biomater 39(4):650–659 Sharma A, Kumar R, Ram S, Sharma PK (2020) Chitosan embedded with Ag/Au nanoparticles: investigation of their structural, optical and sensing properties. J Polym Res 27(9):1–11 Tommalieh MJ, Ibrahium HA, Awwad NS, Menazea AA (2020) Gold nanoparticles doped polyvinyl alcohol/chitosan blend via laser ablation for electrical conductivity enhancement. J Mol Struct 1221:128814‏ Menazea AA, El-Newehy MH, Thamer BM, El-Naggar ME (2021) Preparation of antibacterial film-based biopolymer embedded with vanadium oxide nanoparticles using one-pot laser ablation. J Mol Struct 1225:129163‏ Anitha A, Sowmya S, Kumar PS, Deepthi S, Chennazhi KP, Ehrlich H, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39(9):1644–1667 Jiménez-Gómez CP, Cecilia JA (2020) Chitosan: A Natural biopolymer with a wide and varied range of applications. Molecules 25(17):3981 Merzendorfer H, Cohen E (2019) Chitin/chitosan: versatile ecological, industrial, and biomedical applications. In Extracellular Sugar-Based Biopolymers Matrices. Springer, Cham 541–624‏ Wang BL, Liu XS, Ji Y, Ren KF, Ji J (2012) Fast and long-acting antibacterial properties of chitosan-Ag/polyvinylpyrrolidone nanocomposite films. Carbohyd Polym 90(1):8–15 Ismail AM, Menazea AA, Ali H (2021) Selective adsorption of cationic azo dyes onto zeolite nanorod-based membranes prepared via laser ablation. J Mater Sci: Mater Electron 32(14):19352–19367 Menazea AA, Ismail AM, Elashmawi IS (2020) The role of Li4Ti5O12 nanoparticles on enhancement the performance of PVDF/PVK blend for lithium-ion batteries. J Market Res 9(3):5689–5698 Sandhya PK, Sreekala MS, Padmanabhan M, Thomas S (2021) Water sorption behavior of phenol formaldehyde resin reinforcing with reduced graphene oxide and ZnO decorated graphene oxide. J Polym Res 28(5):1–15 Ahmed MK, El-Naggar ME, Mahmoud KH, Abdel-Rahim FM, Menazea AA (2021) Electrospun membranes of cellulose acetate/polyvinylidene difluoride containing Au/Se nanoparticles via laser ablation technique for methylene blue degradation. J Polym Res 28(8):1–9 Mahdavi H, Rahimi A, Shahalizade T (2016) Catalytic polymeric membranes with palladium nanoparticle/multi-wall carbon nanotubes as hierarchical nanofillers: preparation, characterization and application. J Polym Res 23(3):39 Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog Polym Sci 38(8):1232–1261 Mittal V (2014) Functional polymer nanocomposites with graphene: a review. Macromol Mater Eng 299(8):906–931 Sadrolhosseini AR, Mahdi MA, Alizadeh F, Rashid SA (2019) Laser ablation technique for synthesis of metal nanoparticle in liquid. Laser Technol App‏ Menazea AA, Awwad NS (2020) Antibacterial activity of TiO2 doped ZnO composite synthesized via laser ablation route for antimicrobial application. J Market Res 9(4):9434–9441 Mostafa AM, Menazea AA (2020) Laser-assisted for preparation ZnO/CdO thin film prepared by pulsed laser deposition for catalytic degradation. Radiat Phys Chem 176:109020‏ Ahmed MK, El-Naggar ME, Aldalbahi A, El-Newehy MH, Menazea AA (2020) Methylene blue degradation under visible light of metallic nanoparticles scattered into graphene oxide using laser ablation technique in aqueous solutions. J Mol Liquids 315:113794‏ Menazea AA, Mostafa AM (2020) Ag doped CuO thin film prepared via pulsed laser deposition for 4-nitrophenol degradation. J Environ Chem Eng 8(5):104104‏ Abdelghany AM, Menazea AA, Abd‐El‐Maksoud MA, Khatab TK (2020) Pulsed laser ablated zeolite nanoparticles: A novel nano‐catalyst for the synthesis of 1, 8‐dioxo‐octahydroxanthene and N‐aryl‐1, 8‐dioxodecahydroacridine with molecular docking validation. Appl Organomet Chem 34(2):e5250‏ Selvaraj V, Jayanthi KP, Arunkumar K, Jeyaram S, Geethakrishnan T, Alagar M (2020) Synthesis and characterization of GO doped bio-resource based composites for NLO and multifaceted applications. J Polym Res 27(3):1–16 Hu X, Mu L, Wen J, Zhou Q (2012) Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses. Carbon 50(8):2772–2781 Chaiyakun S, Witit-Anun N, Nuntawong N, Chindaudom P, Oaew S, Kedkeaw C, Limsuwan P (2012) Preparation and characterization of graphene oxide nanosheets. Proc Eng 32:759–764 Yoo BM, Shin HJ, Yoon HW, Park HB (2014) Graphene and graphene oxide and their uses in barrier polymers. J Appl Polym Sci 131(1)‏ Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565‏ Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980 El Achaby M, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films. Appl Surf Sci 258(19):7668–7677 Ahmadian-Alam L, Teymoori M, Mahdavi H (2020) Polymer grafted GO/sulfonated copolyimide proton exchange nanocomposite membrane: as a polymer electrolyte membranes fuel cell. J Polym Res 27(10):1–13 Lim HN, Huang NM, Loo CH (2012) Facile preparation of graphene-based chitosan films: Enhanced thermal, mechanical and antibacterial properties. J Non-Cryst Solids 358(3):525–530 Abdelghany AM, Mekhail MS, Abdelrazek EM, Aboud MM (2015) Combined DFT/FTIR structural studies of monodispersed PVP/Gold and silver nano particles. J Alloy Compd 646:326–332 Bhuiyan MAQ, Rahman MS, Rahaman MS, Shajahan M, Dafader NC (2015) Improvement of swelling behaviour of poly (vinyl pyrrolidone) and acrylic acid blend hydrogel prepared by the application of gamma radiation. Organic Chem Curr Res 4(138):2161–2401 Mohseni-Bandpi A, Kakavandi B, Kalantary R, Azari A, Keramati A (2015) Development of a novel magnetite–chitosan composite for the removal of fluoride from drinking water: adsorption modeling and optimization. RSC Adv 5(89):73279–73289 Choo K, Ching Y, Chuah C, Julai S, Liou N (2016) Preparation and Characterization of Polyvinyl Alcohol-Chitosan Composite Films Reinforced with Cellulose Nanofiber. Materials 9(8):644 Patterson A (1939) The Scherrer Formula for X-Ray Particle Size Determination. Phys Rev 56(10):978–982 Safo I, Werheid M, Dosche C, Oezaslan M (2019) The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Advances 1(8):3095–3106 Kamaruddin K, Edikresnha D, Sriyanti I, Munir MM, Khairurrijal K (2017) Synthesis of Polyvinylpyrrolidone (PVP)-Green Tea Extract Composite Nanostructures using Electrohydrodynamic Spraying Technique. IOP Conf Series: Mater Sci Eng 202:012043 El Hotaby W, Sherif H, Hemdan B, Khalil W, Khalil S (2017) Assessment of in situ-Prepared Polyvinylpyrrolidone-Silver Nanocomposite for Antimicrobial Applications. Acta Phys Pol, A 131(6):1554–1560 Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J Chem Biol 4(4):185–191 Gutha Y, Pathak J, Zhang W, Zhang Y, Jiao X (2017) Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol 103:234–241 Fernandes Queiroz M, Melo K, Sabry D, Sassaki G, Rocha H (2014) Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar Drugs 13(1):141–158 Ahmed RM (2014) Optical properties and structure of cobalt chloride doped PVA and its blend with PVP. Int J Mod Phys B 28(05):1450036 Abdelghany AM, Menazea AA, Ismail AM (2019) Synthesis, characterization and antimicrobial activity of Chitosan/Polyvinyl Alcohol blend doped with Hibiscus Sabdariffa L. extract. J Mol Struct 1197:603–609 Mott NF, Davis EA (1979) Electronic process in non-crystalline materials. 2nd ed. USA: Oxford University Press Manandhar S, Luitel S, Dahal RK (2019) In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J Trop Med 2019‏ Carneiro JF, Aquino JM, Silva AJ, Barreiro JC, Cass QB, Rocha-Filho RC (2018) The effect of the supporting electrolyte on the electrooxidation of enrofloxacin using a flow cell with a BDD anode: Kinetics and follow-up of oxidation intermediates and antimicrobial activity. Chemosphere 206:674–681 Gao H, Xue Y, Zhang Y, Zhang Y, Meng J (2021) Engineering of Ag-nanoparticle-encapsulated intermediate layer by tannic acid-inspired chemistry towards thin film nanocomposite membranes of superior antibiofouling property. J Membr Sci 119922‏