Improvement in Ride Comfort and Vehicle Stability using Hybrid Semi-Active Suspension System
Tóm tắt
Vehicle vibration control must be implemented to fulfill the aims of sustainable environmental development and minimize human health risks. This article concentrates on the minimization of driver’s body vibrations by improving ride comfort and vehicle stability. The hybrid semi-active vibration control system with the combination of Magneto-rheological (MR) fluid and MR elastomer is presented to mitigate the biodynamic response to the vibration. The proposed hybrid model possesses the characteristics of controllable damping and stiffness. Additionally, fuzzy logic and PID controller are combined to regulate the current supplied to the damper. A quarter car model with a driver is considered to analyze the whole-body vibrations. The proposed model has been simulated for sinusoidal bump road excitation to test the ride comfort and vehicle stability. The results reveal that the seat suspension system with the proposed damper and controller outperforms the passive suspension system by reducing the RMS acceleration values below the ISO suggested values for comfort ride.
Tài liệu tham khảo
S. Luthra, D. Garg, A. Haleem, The impacts of critical success factors for implementing green supply chain management towards sustainability: an empirical investigation of Indian automobile industry. J. Clean. Prod. 121, 142–158 (2016). https://doi.org/10.1016/J.JCLEPRO.2016.01.095
H. Seidel, Selected health risks caused by long-term, whole-body vibration. Am. J. Ind. Med. 23(4), 589–604 (1993). https://doi.org/10.1002/ajim.4700230407
G. Rasmussen, Human body vibration exposure and its measurement. J. Acoust. Soc. Am. 73(6), 2229–2229 (1983). https://doi.org/10.1121/1.389513
S.S. Sun, D.H. Ning, J. Yang, H. Du, S.W. Zhang, W.H. Li, A seat suspension with a rotary magnetorheological damper for heavy duty vehicles. Smart Mater. Struct. 25(10), 105032 (2016). https://doi.org/10.1088/0964-1726/25/10/105032
Y. Zhou, S. Chen, Vehicle ride comfort analysis with whole-body vibration on long-span bridges subjected to crosswind. J. Wind Eng. Ind. Aerodyn. 155, 126–140 (2016). https://doi.org/10.1016/j.jweia.2016.05.001
“ISO 2631-1:1997(en), Mechanical vibration and shock—Evaluation of human exposure to whole-body vibration—Part 1: General requirements,” 3AD. https://www.iso.org/obp/ui/#iso:std:iso:2631:-1:ed-2:v2:en. Accessed 05 June 2021.
V. Jasiūnienė, G. Pociūtė, A. Vaitkus, K. Ratkevičiūtė, A. Pakalnis, Analysis and evaluation of trapezoidal speed humps and their impact on the driver. Balt. J. Road Bridg. Eng. 13(2), 104–109 (2018). https://doi.org/10.7250/bjrbe.2018-13.404
Y.T. Choi, N.M. Wereley, Mitigation of biodynamic response to vibratory and blast-induced shock loads using magnetorheological seat suspensions. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 219(6), 741–753 (2005). https://doi.org/10.1243/095440705X28330
S. Rakheja, S. Sankar, Vibration and shock isolation performance of a semi-active ‘on-off’ damper. J. Vib. Acoust. 107(4), 398–403 (1985). https://doi.org/10.1115/1.3269279
G.J. Liao, X.L. Gong, C.J. Kang, S.H. Xuan, The design of an active–adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance. Smart Mater. Struct. 20(7), 075015 (2011). https://doi.org/10.1088/0964-1726/20/7/075015
S. Khot, N.P. Yelve, R. Tomar, S. Desai, S. Vittal, Active vibration control of cantilever beam by using PID based output feedback controller. J. Vib. Control 18(3), 366–372 (2012). https://doi.org/10.1177/1077546311406307
D. Chhabra, G. Bhushan, P. Chandna, Optimal placement of piezoelectric actuators on plate structures for active vibration control via modified control matrix and singular value decomposition approach using modified heuristic genetic algorithm. Mech. Adv. Mater. Struct. 23(3), 272–280 (2016). https://doi.org/10.1080/15376494.2014.949932
R. Rosli, Z. Mohamed, G. Priyandoko, Semi active seat suspension system using modified intelligent active force control. Int. J. Automot. Mech. Eng. 18(1), 8498–8504 (2021). https://doi.org/10.15282/ijame.18.1.2021.09.0644
H.F. Lam, W.-H. Liao, Semi-active control of automotive suspension systems with magnetorheological dampers, in Smart Structures and Materials 2001: Smart Structures and Integrated Systems, vol. 4327, pp. 125–136 (2001). https://doi.org/10.1117/12.436523.
J. M. Ginder, W.F. Schlotter, M.E. Nichols, Magnetorheological elastomers in tunable vibration absorbers, in Smart Structures and Materials 2001: Damping and Isolation, Jul. 2001, vol. 4331, pp. 103–110. https://doi.org/10.1117/12.432694.
P. Gao, H. Liu, C. Xiang, P. Yan, T. Mahmoud, A new magnetorheological elastomer torsional vibration absorber: structural design and performance test. Mech. Sci. 12(1), 321–332 (2021). https://doi.org/10.5194/ms-12-321-2021
M. El-Kafafy, S.M. El-Demerdash, A.-A.M. Rabeih, Automotive ride comfort control using MR fluid damper. Engineering 04(04), 179–187 (2012). https://doi.org/10.4236/eng.2012.44024
A. Abu-Khudhair, R. Muresan, S.X. Yang, Fuzzy control of semi-active automotive suspensions, in 2009 IEEE Int. Conf. Mechatronics Autom. ICMA 2009, pp. 2118–2122 (2009). https://doi.org/10.1109/ICMA.2009.5246409
J. Zhang, R. Gao, Z. Zhao, W. Han, Fuzzy logic controller based genetic algorithm for semi-active suspension. J. Sci. Ind. Res. (India) 71(8), 521–527 (2012)
J.H. Zhao, W.B. Zhang, H. Hao, The fuzzy control method in semi-active suspension. Adv. Mater. Res. 159, 644–649 (2010). https://doi.org/10.4028/www.scientific.net/AMR.159.644
M.H.A. Talib, I.Z. Mat Darus, Development of fuzzy logic controller by particle swarm optimization algorithm for semi-active suspension system using magneto-rheological damper. WSEAS Trans. Syst. Control 9(1), 77–85 (2014)
J.M. Ginder, M.E. Nichols, L.D. Elie, S.M. Clark, Controllable-stiffness components based on magnetorheological elastomers, in Smart Structures and Materials 2000: Smart Structures and Integrated Systems, vol. 3985, p. 418 (2000). https://doi.org/10.1117/12.388844.
Y.Z. Arslan, A. Sezgin, N. Yagiz, Improving the ride comfort of vehicle passenger using fuzzy sliding mode controller. J. Vib. Control 21(9), 1667–1679 (2015). https://doi.org/10.1177/1077546313500061
C. Papalukopoulos, S. Natsiavas, Nonlinear biodynamics of passengers coupled with quarter car models. J. Sound Vib. 304(1–2), 50–71 (2007). https://doi.org/10.1016/j.jsv.2007.01.042
J.-J. Bae, N. Kang, Development of a five-degree-of-freedom seated human model and parametric studies for its vibrational characteristics. Shock Vib. 2018, 1–15 (2018). https://doi.org/10.1155/2018/1649180
M. Ghoniem, T. Awad, O. Mokhiamar, Control of a new low-cost semi-active vehicle suspension system using artificial neural networks. Alexandria Eng. J. 59(5), 4013–4025 (2020). https://doi.org/10.1016/j.aej.2020.07.007
N. Yagiz, L.E. Sakman, R. Guclu, Different control applications on a vehicle using fuzzy logic control. Sadhana 33(1), 15–25 (2008). https://doi.org/10.1007/s12046-008-0002-9
S.M.H. Rizvi, M. Abid, A.Q. Khan, S.G. Satti, J. Latif, H∞ control of 8 degrees of freedom vehicle active suspension system. J. King Saud Univ. Eng. Sci. 30(2), 161–169 (2018). https://doi.org/10.1016/j.jksues.2016.02.004
M.M. Fateh, M.M. Zirkohi, Adaptive impedance control of a hydraulic suspension system using particle swarm optimisation. Veh. Syst. Dyn. 49(12), 1951–1965 (2011). https://doi.org/10.1080/00423114.2011.564289
S. Sun et al., Experimental study of a variable stiffness seat suspension installed with a compact rotary MR damper. Front. Mater. 8, 1–10 (2021). https://doi.org/10.3389/fmats.2021.594843
Y. Liu, H. Matsuhisa, H. Utsuno, J.G. Park, Vibration isolation by a variable stiffness and damping system. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 48(2), 305–310 (2005). https://doi.org/10.1299/JSMEC.48.305
W.H. Li, X.Y. Wang, X.Z. Zhang, Y. Zhou, Development and analysis of a variable stiffness damper using an MR bladder. Smart Mater. Struct. 18(7), 074007 (2009). https://doi.org/10.1088/0964-1726/18/7/074007
Y. Zhou, X. Wang, X. Zhang, W. Li, Variable stiffness and damping magnetorheological isolator. Front. Mech. Eng. China 4(3), 310–315 (2009). https://doi.org/10.1007/s11465-009-0039-4
C. Spelta et al., Performance analysis of semi-active suspensions with control of variable damping and stiffness. Veh. Syst. Dyn. 49(1–2), 237–256 (2011). https://doi.org/10.1080/00423110903410526
Y. Xu, M. Ahmadian, R. Sun, Improving vehicle lateral stability based on variable stiffness and damping suspension system via MR damper. IEEE Trans. Veh. Technol. 63(3), 1071–1078 (2014). https://doi.org/10.1109/TVT.2013.2282824
S. Sun, J. Yang, W. Li, H. Deng, H. Du, G. Alici, Development of a novel variable stiffness and damping magnetorheological fluid damper. Smart Mater. Struct. 24(8), 085021 (2015). https://doi.org/10.1088/0964-1726/24/8/085021
C. Greiner-Petter, A.S. Tan, T. Sattel, A semi-active magnetorheological fluid mechanism with variable stiffness and damping. Smart Mater. Struct. 23(11), 115008 (2014). https://doi.org/10.1088/0964-1726/23/11/115008
X.Z. Zhang, X.Y. Wang, W.H. Li, K. Kostidis, Variable stiffness and damping MR isolator. J. Phys. Conf. Ser. 149, 012088 (2009). https://doi.org/10.1088/1742-6596/149/1/012088
C. Bharathi Priya, N. Gopalakrishnan, Parameter identification of long stroke and short stroke MR damper for its use in semi-active vibration control. J. Inst. Eng. Ser. A 97(4), 405–414 (2016). https://doi.org/10.1007/s40030-016-0182-y
W. Abba, O.B. Abouelatta, M. El-Azab, M. El-Saidy, A.A. Megahed, Optimal seat suspension design using genetic algorithms. J. Mech. Eng. Autom. 1, 44–52 (2011)
Ö. Gündoğdu, Optimal seat and suspension design for a quarter car with driver model using genetic algorithms. Int. J. Ind. Ergon. 37(4), 327–332 (2007). https://doi.org/10.1016/j.ergon.2006.11.005