Improved strategies to efficiently isolate thermophilic, thermotolerant, and heat-resistant fungi from compost and soil

Mycological Progress - Tập 20 - Trang 325-339 - 2021
Frederick Witfeld1, Dominik Begerow1, Marco Alexandre Guerreiro1
1Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany

Tóm tắt

Thermophilic, thermotolerant and heat-resistant fungi developed different physiological traits, enabling them to sustain or even flourish under elevated temperatures, which are life-hostile for most other eukaryotes. With the growing demand of heat-stable molecules in biotechnology and industry, the awareness of heat-adapted fungi as a promising source of respective enzymes and biomolecules is still increasing. The aim of this study was to test two different strategies for the efficient isolation and identification of distinctly heat-adapted fungi from easily accessible substrates and locations. Eight compost piles and ten soil sites were sampled in combination with different culture-dependent approaches to describe suitable strategies for the isolation and selection of thermophilous fungi. Additionally, an approach with a heat-shock treatment, but without elevated temperature incubation led to the isolation of heat-resistant mesophilic species. The cultures were identified based on morphology, DNA barcodes, and microsatellite fingerprinting. In total, 191 obtained isolates were assigned to 31 fungal species, from which half are truly thermophilic or thermotolerant, while the other half are heat-resistant fungi. A numerous amount of heat-adapted fungi was isolated from both compost and soil samples, indicating the suitability of the used approaches and that the richness and availability of those organisms in such environments are substantially high.

Tài liệu tham khảo

Ahirwar S, Soni H, Prajapati BP, Kango N (2017) Isolation and screening of thermophilic and thermotolerant fungi for production of hemicellulases from heated environments. Mycol 8:125–134. https://doi.org/10.1080/21501203.2017.1337657 Ali M, Moghazy S, Shaban G, El-Sababty Z (2009) Heat-resistant fungi isolated from soil in Minia Governorate. Assiut Univ J Bot 38:93–106 Anastasi A, Varese GC, Filipello Marchisio V (2005) Isolation and identification of fungal communities in compost and vermicompost. Mycologia 97:33–44. https://doi.org/10.1080/15572536.2006.118328362006.11832836 Apinis AE (1963) Thermophilous fungi of coastal grasslands. In: Doeksen J, Van der Drift J (eds) Soil Organisms, North-Holland Publishing Co, Amsterdam, pp 427–438 Balajee SA, Gribskov J, Brandt M, Ito J, Fothergill A, Marr KA (2005) Mistaken identity. Neosartorya pseudofischeri and its anamorph masquerading as Aspergillus fumigatus. J Clin Microbiol 43:5996–5999. https://doi.org/10.1128/JCM.43.12.5996-5999.2005 Basotra N, Dhiman SS, Agrawal D, Sani RK, Tsang A, Chadha BS (2019) Characterization of a novel lytic polysaccharide monooxygenase from Malbranchea cinnamomea exhibiting dual catalytic behavior. Carbohydr Res 478:46–53. https://doi.org/10.1016/j.carres.2019.04.006 Berni E, Tranquillini R, Scaramuzza N, Brutti A, Bernini V (2017) Aspergilli with Neosartorya-type ascospores. Heat resistance and effect of sugar concentration on growth and spoilage incidence in berry products. Int J Food Microbiol 258:81–88. https://doi.org/10.1016/j.ijfoodmicro.2017.07.008 Biango-Daniels MN, Snyder AB, Worobo RW, Hodge KT (2019) Fruit infected with Paecilomyces niveus. A source of spoilage inoculum and patulin in apple juice concentrate. Food Control 97:81–86. https://doi.org/10.1016/j.foodcont.2018.10.020 Birajdar GM, Kumbhar VR, Kadam KK, Bhale UN (2020) Occurrence of thermophilic fungal communities and its growth rate on different media and temperatures from available natural substrates. Plant Sci Today 7:172–177. https://doi.org/10.14719/pst.2020.7.2.719 Busk PK, Lange L (2013) Cellulolytic potential of thermophilic species from four fungal orders. AMB Express 3:47. https://doi.org/10.1186/2191-0855-3-47 Buxton PA, Mellanby K (1934) The measurement and control of humidity. Bull Entomol Res 25:171–175. https://doi.org/10.1017/S0007485300012608 Caspeta L, Chen Y, Nielsen J (2016) Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30 °C. Sci Rep 6:27003. https://doi.org/10.1038/srep27003 Chadha BS, Harmeet G, Mandeep M, Saini HS, Singh N (2004) Phytase production by the thermophilic fungus Rhizomucor pusillus. World J Microbiol Biotechnol 20:105–109. https://doi.org/10.1023/B:WIBI.0000013319.13348.0a Cheng VCC, Chan JFW, Ngan AHY, To KKW, Leung SY, Tsoi HW, Yam WC, Tai JWM, Wong SSY, Tse H, Li IWS, Lau SKP, Woo PCY, Leung AYH, Lie AKW, Liang RHS, Que TL, Ho PL, Yuen KY (2009) Outbreak of intestinal infection due to Rhizopus microsporus. J Clin Microbiol 47:2834–2843. https://doi.org/10.1128/JCM.00908-09 Chowdhury R, Maranas CD (2019) From directed evolution to computational enzyme engineering - A review. AIChE J 66(3):e16847. https://doi.org/10.1002/aic.16847 Cooney DG, Emerson R (1964) Thermophilic fungi (Vol. 27). WH Freeman, San Francisco Corbel MJ, Eades SM (1991) Observations on the experimental pathogenicity and toxigenicity of Mortierella wolfii strains of bovine origin. Br Vet J 147:504–516. https://doi.org/10.1016/0007-1935(91)90020-N Cubeta MA, Echandi E, Abernethy T, Vilgalys R (1991) Characterization of anastomosis groups of binucleate rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathol 81:1395. https://doi.org/10.1094/Phyto-81-1395 Damásio ARL, Maller A, Silva TM, Jorge JA, Terenzi HF, Polizeli MLTM (2011) Biotechnological potential of alternative carbon sources for production of pectinases by Rhizopus microsporus var. rhizopodiformis. Braz Arch Biol Technol 54:141–148. https://doi.org/10.1590/S1516-89132011000100019 de Gannes V, Eudoxie G, Hickey WJ (2013) Insights into fungal communities in composts revealed by 454-pyrosequencing. Implications for human health and safety. Front Microbiol 4:164 de Oliveira APA, Silvestre MA, Garcia NFL, Alves-Prado HF, Rodrigues A, da Paz MF, Fonseca GG, Leite RSR (2016) Production and catalytic properties of amylases from Lichtheimia ramosa and Thermoascus aurantiacus by solid-state fermentation. Sci World J 2016:7323875. https://doi.org/10.1155/2016/7323875 de Vuyst L, Camu N, de Winter T, Vandemeulebroecke K, van de Perre V, Vancanneyt M, de Vos P, Cleenwerck I (2008) Validation of the (GTG)5-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int J Food Microbiol 125:79–90. https://doi.org/10.1016/j.ijfoodmicro.2007.02.030 Dien Bard J, Mangahis A, Hofstra TC, Bender JM (2014) First case report of bloodstream infection by Rhizomucor pusillus in a child with hemophagocytic lymphohistiocytosis. Med Mycol Case Rep 5:20–23. https://doi.org/10.1016/j.mmcr.2014.05.002 Dix NJ, Webster J (1995) Fungal Ecology. Springer Netherlands, Dordrecht dos Santos JLP, Samapundo S, Biyikli A, van Impe J, Biyikli A, Akkermans S, Höfte M, Abatih EN, Sant'Ana AS, Devlieghere F (2018) Occurrence, distribution and contamination levels of heat-resistant moulds throughout the processing of pasteurized high-acid fruit products. Int J Food Microbiol 281:72–81. https://doi.org/10.1016/j.ijfoodmicro.2018.05.019 Dwyer K (2019) A study of selected xylanolytic and chitinolytic enzymes from Rasamsonia emersonii, and their potential application in the valorisation of mushroom-production waste streams. Dissertation, University of Limerick Eggins HOW, Malik KA (1969) The occurrence of thermophilic cellulolytic fungi in a pasture land soil. Antonie van Leeuwenhoek 35:178–184. https://doi.org/10.1007/BF02219128 Engel G, Teuber M (1991) Heat resistance of ascospores of Byssochlamys nivea in milk and cream. Int J Food Microbiol 12:225–233. https://doi.org/10.1016/0168-1605(91)90073-X Fergus CL, Amelung RM (1971) The heat resistance of some thermophilic fungi on mushroom compost. Mycologia 63:675–679. https://doi.org/10.2307/3757572 Ferreira EHR, Rosenthal A, Calado V, Saraiva J, Mendo S (2009) Byssochlamys nivea inactivation in pineapple juice and nectar using high pressure cycles. J Food Eng 95:664–669. https://doi.org/10.1016/j.jfoodeng.2009.06.053 Fischer D, Glaser B (2012) Synergisms between compost and biochar for sustainable soil amelioration. In: Chindo PS, Bello LY, Kumar N (eds) Utilization of organic wastes for the management of phyto-parasitic nematodes in developing economies. INTECH Open Access Publisher. https://doi.org/10.5772/31200 Frąc M, Jezierska-Tys S, Yaguchi T (2015) Occurrence, detection, and molecular and metabolic characterization of heat-resistant fungi in soils and plants and their risk to human health. Adv Agron 132: 161–204. https://doi.org/10.1016/bs.agron.2015.02.003 Frisvad JC, Frank JM, Houbraken JAMP, Kuijpers AFA, Samson RA (2004) New ochratoxin A producing species of Aspergillus section Circumdati. Stud Mycol:23–43 Galitskaya P, Biktasheva L, Saveliev A, Grigoryeva T, Boulygina E, Selivanovskaya S (2017) Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing. PloS one 12:e0186051. https://doi.org/10.1371/journal.pone.0186051 Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x Ghatora SK, Chadha BS, Badhan AK, Saini HS, Bhat MK (2006) Identification and characterization of diverse xylanases from thermophilic and thermotolerant fungi. BioResour 1(1):18–33 Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330 Gomes MZR, Lewis RE, Kontoyiannis DP (2011) Mucormycosis caused by unusual mucormycetes, non-Rhizopus, -Mucor, and -Lichtheimia species. Clin Microbiol Rev 24:411–445. https://doi.org/10.1128/CMR.00056-10 Gonçalves FA, Leite RSR, Rodrigues A, Argandoña EJS, Fonseca GG (2013) Isolation, identification and characterization of a novel high level β-glucosidase-producing Lichtheimia ramosa strain. Biocatal Agric Biotechnol 2:377–384. https://doi.org/10.1016/j.bcab.2013.06.006 Hasanin MS, Hashem AH, Abd El-Sayed ES, El-Saied H (2020) Green ecofriendly bio-deinking of mixed office waste paper using various enzymes from Rhizopus microsporus AH3. Efficiency and characteristics. Cellul 27:4443–4453. https://doi.org/10.1007/s10570-020-03071-3 Hogaboam CM, Blease K, Mehrad B, Steinhauser ML, Standiford TJ, Kunkel SL, Lukacs NW (2000) Chronic airway hyperreactivity, goblet cell hyperplasia, and peribronchial fibrosis during allergic airway disease induced by Aspergillus fumigatus. Am J Pathol 156(2):723–732. https://doi.org/10.1016/S0002-9440(10)64775-X Horie Y, Abliz P, Fukushima K, Okada K, Takaki GC (2003) Two new species of Neosartorya from Amazonian soil, Brazil. Mycosci 44:397–402. https://doi.org/10.1007/S10267-003-0132-1 Hosoe T, Mori N, Kamano K, Itabashi T, Yaguchi T, Kawai K (2011) A new antifungal yellow pigment from Aspergillus nishimurae. J Antibiot 64:211–212. https://doi.org/10.1038/ja.2010.132 Hosoya K, Nakayama M, Tomiyama D, Matsuzawa T, Imanishi Y, Ueda S, Yaguchi T (2014) Risk analysis and rapid detection of the genus Thermoascus, food spoilage fungi. Food Control 41:7–12. https://doi.org/10.1016/j.foodcont.2013.12.021 Houbraken J, Spierenburg H, Frisvad JC (2012) Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. Antonie van Leeuwenhoek 101:403–421. https://doi.org/10.1007/s10482-011-9647-1 Hua C, Li W, Han W, Wang Q, Bi P, Han C, Zhu L (2018) Characterization of a novel thermostable GH7 endoglucanase from Chaetomium thermophilum capable of xylan hydrolysis. Int J Biol Macromol 117:342–349. https://doi.org/10.1016/j.ijbiomac.2018.05.189 Hunter BB, Hoyes JV, Barnett HL (1974) The additions of aureomycin and chloramphenicol to various fungal agar media to prevent bacterial contamination. Proc Pa Acad Sci 48:88–92 Hüttner S, Granchi Z, Nguyen TT, van Pelt S, Larsbrink J, Thanh VN, Olsson L (2018) Genome sequence of Rhizomucor pusillus FCH 5.7, a thermophilic zygomycete involved in plant biomass degradation harbouring putative GH9 endoglucanases. Biotechnol Rep 20:e00279. https://doi.org/10.1016/j.btre.2018.e00279 Ianutsevich EA, Danilova OA, Groza NV, Kotlova ER, Tereshina VM (2016) Heat shock response of thermophilic fungi. Membrane lipids and soluble carbohydrates under elevated temperatures. Microbiol 162:989–999. https://doi.org/10.1099/mic.0.000279 Izzo A, Nguyen DT, Bruns TD (2006) Spatial structure and richness of ectomycorrhizal fungi colonizing bioassay seedlings from resistant propagules in a Sierra Nevada forest. Comparisons using two hosts that exhibit different seedling establishment patterns. Mycol 98:374–383. https://doi.org/10.1080/15572536.2006.11832672 Jayasuriya H, Zink D, Basilio A, Vicente F, Collado J, Bills G, Goldman ML, Motyl M, Huber J, Dezeny G, Byrne K, Singh SB (2009) Discovery and antibacterial activity of glabramycin A-C from Neosartorya glabra by an antisense strategy. J Antibio 62:265–269. https://doi.org/10.1038/ja.2009.26 Jensen HL (1931) The fungus flora of the soil. Soil Science 31(2):123 Jepsen HF, Jensen B (2004) Accumulation of trehalose in the thermophilic fungus Chaetomium thermophilum var. coprophilum in response to heat or salt stress. Soil Biol Biochem 36:1669–1674. https://doi.org/10.1016/j.soilbio.2004.07.010 Jesenská Z, Piecková E (1995) Heat-resistant fungi. Czech Mycol. 48:73–76. https://doi.org/10.33585/cmy.48110 Jesenská Z, Piecková E, Bernát D (1992) Heat-resistant fungi in the soil. Int J Food Microbiol 16:209–214. https://doi.org/10.1016/0168-1605(92)90081-D Jesenská Z, Piecková E, Bernát D (1993) Heat resistance of fungi from soil. Int J Food Microbiol 19:187–192. https://doi.org/10.1016/0168-1605(93)90076-S Jiang X, Deng L, Meng Q, Sun Y, Han Y, Wu X, Sheng S, Zhu H, Ayodeji B, Egbeagu UU, Xu X (2020) Fungal community succession under influence of biochar in cow manure composting. Env Sci Pollut Res Int 27:9658–9668. https://doi.org/10.1007/s11356-019-07529-1 Kalim B, Ali NM (2016) Optimization of fermentation media and growth conditions for microbial xylanase production. 3 Biotech 6:122. https://doi.org/10.1007/s13205-016-0445-3 Khan FI, Bisetty K, Singh S, Permaul K, Hassan MI (2015) Chitinase from Thermomyces lanuginosus SSBP and its biotechnological applications. Extrem: Life Extrem Cond 19:1055–1066. https://doi.org/10.1007/s00792-015-0792-8 Kimura M, Udagawa S, Makimura K, Satoh K, Toyazaki N, Ito H (2009) Isolation and identification of Rhizomucor pusillus from pleural zygomycosis in an immunocompetent patient. Med Mycol 47(8):869–873. https://doi.org/10.3109/13693780903059485 King AD, Michener HD, Ito KA (1969) Control of Byssochlamys and related heat-resistant fungi in grape products. Appl Env Microbiol 18(2):166–173 Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi. CAB Int. UK, Wallingford Korniłłowicz-Kowalska T, Kitowski I (2013) Aspergillus fumigatus and Other thermophilic fungi in nests of wetland birds. Mycopath 175:43–56. https://doi.org/10.1007/s11046-012-9582-3 Kotzekidou P (1997) Heat resistance of Byssochlamys nivea, Byssochlamys fulva and Neosartorya fischeri isolated from canned tomato paste. J Food Sci 62:410–412. https://doi.org/10.1111/j.1365-2621.1997.tb04014.x Kozakiewicz Z, Smith D (1994) Physiology of Aspergillus. In: Smith JE (ed) Aspergillus. Springer, Boston, MA, pp 23–40. https://doi.org/10.1007/978-1-4615-2411-3_2 Kumar R, Aneja KR (1999) Influence of incubation temperature on growth rates of fifteen thermophilous fungi. J Mycopathol Res 37:5–8 Langarica-Fuentes A, Handley PS, Houlden A, Fox G, Robson GD (2014a) An investigation of the biodiversity of thermophilic and thermotolerant fungal species in composts using culture-based and molecular techniques. Fungal Ecol 11:132–144. https://doi.org/10.1016/j.funeco.2014.05.007 Langarica-Fuentes A, Zafar U, Heyworth A, Brown T, Fox G, Robson GD (2014b) Fungal succession in an in-vessel composting system characterized using 454 pyrosequencing. FEMS Microbiol Ecol 88:296–308. https://doi.org/10.1111/1574-6941.12293 Langarica-Fuentes A, Fox G, Robson GD (2015) Metabarcoding analysis of home composts reveals distinctive fungal communities with a high number of unassigned sequences. Microbiol 161:1921–1932. https://doi.org/10.1099/mic.0.000153 Latgé JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12(2):310–350. https://doi.org/10.1128/CMR.12.2.310 Le Goff O, Bru-Adan V, Bacheley H, Godon JJ, Wéry N (2010) The microbial signature of aerosols produced during the thermophilic phase of composting. J Appl Microbiol 108:325–340. https://doi.org/10.1111/j.1365-2672.2009.04427.x Le Naourès C, Bonhomme J, Terzi N, Duhamel C, Galateau-Sallé F (2011) A fatal case with disseminated Myceliophthora thermophila infection in a lymphoma patient. Diagn Microbiol Infect Dis 70:267–269. https://doi.org/10.1016/j.diagmicrobio.2011.01.003 Lechner P, Linzer R, Mostbauer P, Binner E, Smidt E (2005) Klimarelevanz der Kompostierung unter Berücksichtigung der Verfahrenstechnik und Kompost-anwendung (KliKo). University of Natural Resources and Life Sciences of Vienna Lee H, Lee YM, Jang Y, Lee S, Lee H, Ahn BJ, Kim GH, Kim JJ (2014) Isolation and analysis of the enzymatic properties of thermophilic fungi from compost. Mycobiol 42:181–184. https://doi.org/10.5941/MYCO.2014.42.2.181 Lieckfeldt E, Meyer W, Börner T (1993) Rapid identification and differentiation of yeasts by DNA and PCR fingerprinting. J Basic Microbiol 33:413–425. https://doi.org/10.1002/jobm.3620330609 Liu Q, Gao R, Li J, Lin L, Zhao J, Sun W, Tian C (2017) Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol Biofuels 10:1. https://doi.org/10.1186/s13068-016-0693-9 Maalej-Achouri I, Guerfali M, Romdhane IB-B, Gargouri A, Belghith H (2012) The effect of Talaromyces thermophilus cellulase-free xylanase and commercial laccase on lignocellulosic components during the bleaching of kraft pulp. Int Biodeterior Biodegrad 75:43–48. https://doi.org/10.1016/j.ibiod.2012.04.015 Madrid H, Cano J, Stchigel AJ, Gené J, Guarro J (2010) Ramophialophora humicola and Fibulochlamys chilensis, two new microfungi from soil. Mycol 102:605–612. https://doi.org/10.3852/09-128 Mahajan C, Basotra N, Singh S, Di Falco M, Tsang A, Chadha BS (2016) Malbranchea cinnamomea. A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes. Bioresour Technol 200:55–63. https://doi.org/10.1016/j.biortech.2015.09.113 Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi. Their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488. https://doi.org/10.1128/MMBR.64.3.461-488.2000 Martin N, Guez MAU, Sette LD, Da Silva R, Gomes E (2010) Pectinase production by a Brazilian thermophilic fungus Thermomucor indicae-seudaticae N31 in solid-state and submerged fermentation. Microbiol 79:306–313. https://doi.org/10.1134/S0026261710030057 McPhillips K, Waters DM, Parlet C, Walsh DJ, Arendt EK, Murray PG (2014) Purification and characterisation of a β-1,4-xylanase from Remersonia thermophila CBS 540.69 and its application in bread making. Appl Biochem Biotech 172:1747–1762. https://doi.org/10.1007/s12010-013-0640-1 Meng Q, Yang W, Men M, Bello A, Xu X, Xu B, Deng L, Jiang X, Sheng S, Wu X, Han Y, Zhu H (2019) Microbial community succession and response to environmental variables during cow manure and corn straw composting. Front Microbiol 10:529. https://doi.org/10.3389/fmicb.2019.00529 Merheb-Dini C, Garcia GAC, Penna ALB, Gomes E, da Silva R (2012) Use of a new milk-clotting protease from Thermomucor indicae-seudaticae N31 as coagulant and changes during ripening of Prato cheese. Food Chem 130:859–865. https://doi.org/10.1016/j.foodchem.2011.07.105 Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan MC, Quenneville G, Tsang A (2012) A molecular phylogeny of thermophilic fungi. Fungal Biol 116. https://doi.org/10.1016/j.funbio.2012.01.010 Mouronte-Roibás C, Leiro-Fernández V, Botana-Rial M, Ramos-Hernández C, Lago-Preciado G, Fiaño-Valverde C, Fernández-Villar A (2016) Lichtheimia ramosa. A fatal case of mucormycosis. Can Respir J 2016:2178218. https://doi.org/10.1155/2016/2178218 Mülhardt C (2013) Der Experimentator Molekularbiologie/Genomics, 7th edn. Springer Berlin Heidelberg, Berlin s.l. Munday JS, Laven RA, Orbell GMB, Pandey SK (2006) Meningoencephalitis in an adult cow due to Mortierella Wolfii. J Vet Diagn Investig 18(6):619–622. https://doi.org/10.1177/104063870601800620 Nazir N, Mirza H, Akhtar N, Bajwa R, Nasin G (2007) Some studies of thermophilic and thermotolerant fungi from Lahore, Pakistan. Mycopath 5:95–100 Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PloS one 8:e79512. https://doi.org/10.1371/journal.pone.0079512 Nguyen HDT, Chabot D, Hirooka Y, Roberson RW, Seifert KA (2015) Basidioascus undulatus. Genome, origins, and sexuality. IMA Fungus 6:215–231. https://doi.org/10.5598/imafungus.2015.06.01.14 Noreen N, Ramzan N, Parveen Z, Shahzad S (2019) A comparative study of cow dung compost, goat pellets, poultry waste manure and plant debris for thermophilic, thermotolerant and mesophilic microflora with some new reports from Pakistan. Pak J Bot 51. https://doi.org/10.30848/PJB2019-3(42) Nourrisson C, Garcia-Hermoso D, Morio F, Kauffmann-Lacroix C, Berrette N, Bonhomme J, Poirier P, Lortholary O (2017) Thermothelomyces thermophila human infections. Clin Microbiol Infect 23:338–341. https://doi.org/10.1016/j.cmi.2016.10.025 Okagbue RN (1989) Heat-resistant fungi in soil samples from northern nigeria. J Food Prot 52:59–61. https://doi.org/10.4315/0362-028X-52.1.59 Oliveira DS, Telis-Romero J, Da-Silva R, Franco CML (2014) Effect of a Thermoascus aurantiacus thermostable enzyme cocktail on wheat bread qualitiy. Food Chem 143:139–146. https://doi.org/10.1016/j.foodchem.2013.07.103 Ottow JCG (1972) Rose bengal as a selective aid in the isolation of fungi and actinomycetes from natural sources. Mycol 64:304–315. https://doi.org/10.1080/00275514.1972.12019265 Pan WZ, Huang XW, Wei KB, Zhang CM, Yang DM, Ding JM, Zhang KQ (2010) Diversity of thermophilic fungi in Tengchong Rehai National Park revealed by ITS nucleotide sequence analyses. J Micro (Seoul, Korea) 48:146–152. https://doi.org/10.1007/s12275-010-9157-2 Peterson SW (2004) Multilocus DNA sequence analysis shows that Penicillium biourgeianum is a distinct species closely related to P. brevicompactum and P. olsonii. Mycol Res 108:434–440. https://doi.org/10.1017/S0953756204009761 Peterson SW, Jurjević Z (2013) Talaromyces columbinus sp. nov., and genealogical concordance analysis in Talaromyces clade 2a. PloS one 8:e78084. https://doi.org/10.1371/journal.pone.0078084 Piecková E, Jesenská Z (1997) Toxinogenicity of heat-resistant fungi detected by a bio-assay. Int J Food Microbiol 36:227–229. https://doi.org/10.1016/S0168-1605(97)01239-7 Piecková E, Samson RA (2000) Heat resistance of Paecilomyces variotii in sauce and juice. J Ind Microbiol Biotech 24:227–230. https://doi.org/10.1038/sj.jim.2900794 Pitt JI, Hocking AD (2009) Spoilage of stored, processed and preserved foods. In: Pitt JI, Hocking AD (eds) Fungi and food spoilage. Springer Intern Publishing, Cham, pp 489–507 Powell AJ, Parchert KJ, Bustamante JM, Ricken JB, Hutchinson MI, Natvig DO (2012) Thermophilic fungi in an aridland ecosystem. Mycol 104:813–825. https://doi.org/10.3852/11-298 Puel O, Tadrist S, Galtier P, Oswald IP, Delaforge M (2005) Byssochlamys nivea as a source of mycophenolic acid. Appl Env Microbiol 71:550–553. https://doi.org/10.1128/AEM.71.1.550-553.2005 Raheja Y, Kaur B, Falco M, Tsang A, Chadha BS (2020) Secretome analysis of Talaromyces emersonii reveals distinct CAZymes profile and enhanced cellulase production through response surface methodology. Indust Crop Prod 152:112554. https://doi.org/10.1016/j.indcrop.2020.112554 Rajavaram RK, Bathini S, Girisham S, Reddy SM (2010) Incidence of thermophilic fungi from different substrates in Andhra Pradesh (India). Int J Pharm Bio Sci 3:BS33 Rhodes JC (2006) Aspergillus fumigatus. Growth and virulence. Med Mycol 44(Suppl 1):S77–S81. https://doi.org/10.1080/13693780600779419 Rigoldi F, Donini S, Redaelli A, Parisini E, Gautieri A (2018) Review. Engineering of thermostable enzymes for industrial applications. APL bioengineering 2:11501. https://doi.org/10.1063/1.4997367 Robledo A, Aguilar CN, Belmares-Cerda RE, Flores-Gallegos AC, Contreras-Esquivel JC, Montañez JC, Mussatto SI (2016) Production of thermostable xylanase by thermophilic fungal strains isolated from maize silage. CyTA - J Food 14:302–308. https://doi.org/10.1080/19476337.2015.1105298 Rodrigues RC, Fernandez-Lafuente R (2010) Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. J Mol Catal B: Enzym 64:1–22. https://doi.org/10.1016/j.molcatb.2010.02.003 Rodriguez E, Mullaney EJ, Lei XG (2000) Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem Biophys Res Commun 268(2):373–378. https://doi.org/10.1006/bbrc.2000.2121 Salar RK (2018) Thermophilic fungi. Basic concepts and biotechnological applications. CRC PRESS, Boca Raton. https://doi.org/10.1201/9781351118187 Salar RK, Aneja KR (2006) Thermophilous fungi from temperate soils of northern India. J Agric Technol 2(1):49–58 Salomão BCM, Muller C, Amparo HC, Aragão GMF (2014) Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process. Braz J Microbiol 45(2014):49–58. https://doi.org/10.1590/s1517-83822014000100008 Samson RA, Dijksterhuis J (2007) Food Mycology. A multifaceted approach to fungi and food. CRC PRESS, Boca Raton. https://doi.org/10.1201/9781420020984 Samson RA, Hoekstra ES, Lund F, Filtenborg O, Frisvad JC (2000) Methods for the detection, isolation and characterization of food-borne fungi. In: Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (eds) Introduction to food- and airborne fungi. Centraalbureau voor Schimmelcultures, Utrecht, pp 283–297 Sandona K, Billingsley Tobias TL, Hutchinson MI, Natvig DO, Porras-Alfaro A (2019) Diversity of thermophilic and thermotolerant fungi in corn grain. Mycol 111:719–729. https://doi.org/10.1080/00275514.2019.1631137 Scaramuzza N, Berni E (2014) Heat-resistance of Hamigera avellanea and Thermoascus crustaceus isolated from pasteurized acid products. Int J Food Microbiol 168-169:63–68. https://doi.org/10.1016/j.ijfoodmicro.2013.10.007 Schiano-di-Cola C, Kołaczkowski B, Sørensen TH, Christensen SJ, Cavaleiro AM, Windahl MS, Borch K, Morth JP, Westh P (2020) Structural and biochemical characterization of a family 7 highly thermostable endoglucanase from the fungus Rasamsonia emersonii. FEBS J 287:2577–2596. https://doi.org/10.1111/febs.15151 Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Nat Acad Sci 109:6241–6246. https://doi.org/10.1073/pnas.1117018109 Schuerg T, Gabriel R, Baecker N, Baker SE, Singer SW (2017) Thermoascus aurantiacus is an intriguing host for the industrial production of cellulases. CBIOT 6:89–97. https://doi.org/10.2174/2211550105666160520123504 Seifert KA, Nickerson NL, Corlett M, Jackson ED, Louis-Seize G, Davies RJ (2004) Devriesia, a new hyphomycete genus to accommodate heat-resistant, cladosporium-like fungi. Can J Bot. 82:914–926. https://doi.org/10.1139/b04-070 Sen SK, Jana A, Bandyopadhyay P, Das Mohapatra PK, Raut S (2016) Thermostable amylase production from hot spring isolate Exiguobacterium sp. A promising agent for natural detergents. Sustain Chem Pharm 3:59–68. https://doi.org/10.1016/j.scp.2016.04.002 Sevo M, Degrassi G, Skoko N, Venturi V, Ljubijankić G (2002) Production of glycosylated thermostable Providencia rettgeri penicillin G amidase in Pichia pastoris. FEMS Yeast Res 1:271–277. https://doi.org/10.1111/j.1567-1364.2002.tb00045.x Sezen S, Demirel R (2019) Preliminary study on the determination of heat resistant fungi in agricultural soils. Mantar Dergisi 10:60–66. https://doi.org/10.30708/mantar.632181 Sharma A, Tewari R, Rana SS, Soni R, Soni SK (2016) Cellulases. Classification, methods of determination and industrial applications. Appl Biochem Biotechnol 179:1346–1380. https://doi.org/10.1007/s12010-016-2070-3 Singh B (2016) Myceliophthora thermophila syn. Sporotrichum thermophile. A thermophilic mould of biotechnological potential. Crit Rev Biotechnol 36:59–69. https://doi.org/10.3109/07388551.2014.923985 Sivagnanam S, Chen SC-A, Halliday C, Packham D (2013) Thermomyces lanuginosus infective endocarditis. Case report and a review of endocarditis due to uncommon moulds. Med Mycol Case Rep 2:152–155. https://doi.org/10.1016/j.mmcr.2013.09.001 Stielow JB, Lévesque CA, Seifert KA et al (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 35:242–263. https://doi.org/10.3767/003158515X689135 Su YY, Cai L (2013) Rasamsonia composticola, a new thermophilic species isolated from compost in Yunnan, China. Mycol Prog 12:213–221. https://doi.org/10.1007/s11557-012-0827-9 Tansey MR (1971) Isolation of thermophilic fungi from self-heated, industrial wood chip piles. Mycol 63:537. https://doi.org/10.2307/3757550 Tansey MR, Jack MA (1976) Thermophilic fungi in sun-heated soils. Mycol 68:1061–1075. https://doi.org/10.1080/00275514.1976.12019988 Tekaia F, Latgé JP (2005) Aspergillus fumigatus. Saprophyte or pathogen. Curr Opin Microbiol 8:385–392. https://doi.org/10.1016/j.mib.2005.06.017 Thanh VN, Thuy NT, Huong HTT, Hien DD, Hang DTM, Anh DTK, Hüttner S, Larsbrink J, Olsson L (2019) Surveying of acid-tolerant thermophilic lignocellulolytic fungi in Vietnam reveals surprisingly high genetic diversity. Sci Rep 9:3674. https://doi.org/10.1038/s41598-019-40213-5 Tong X, Lange L, Grell MN, Busk PK (2015) Hydrolysis of wheat arabinoxylan by two acetyl xylan esterases from Chaetomium thermophilum. Appl Biochem Biotechnol 175:1139–1152. https://doi.org/10.1007/s12010-014-1348-6 Tournas V (1994) Heat-resistant fungi of importance to the food and beverage industry. Crit Rev Biotechnol 20:243–263. https://doi.org/10.3109/10408419409113558 Tournas V, Traxler RW (1994) Heat resistance of a Neosartorya fischeri strain isolated from pineapple juice frozen concentrate. J Food Prot 57:814–816. https://doi.org/10.4315/0362-028x-57.9.814 Tranquillini R, Scaramuzza N, Berni E (2017) Occurrence and ecological distribution of heat resistant moulds spores (HRMS) in raw materials used by food industry and thermal characterization of two Talaromyces isolates. Int J Food Microbiol 242:116–123. https://doi.org/10.1016/j.ijfoodmicro.2016.11.023 Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246. https://doi.org/10.1128/JB.172.8.4238-4246.1990 Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJM (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:135–154. https://doi.org/10.1016/j.simyco.2018.05.001 Wang XW, Yang FY, Meijer M, Kraak B, Sun BD, Jiang YL, Wu YM, Bai FY, Seifert KA, Crous PW, Samson RA, Houbraken J (2019) Redefining Humicola sensu stricto and related genera in the Chaetomiaceae. Stud Mycol 93:65–153. https://doi.org/10.1016/j.simyco.2018.07.001 White TJ, Burns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, Cambridge, pp 315–322 Yin G, Zhang Y, Pennerman KK, Wu G, Hua SST, Yu J, Jurick WM, Guo A, Bennett JW (2017) Characterization of blue mold Penicillium species isolated from stored fruits using multiple highly conserved loci. J fungi 3:12. https://doi.org/10.3390/jof3010012 Zhang W, Yang R, Fang W, Yan L, Lu J, Sheng J, Lv J (2016) Characterization of thermophilic fungal community associated with pile fermentation of Pu-erh tea. Int J Food Microbiol 227:29–33. https://doi.org/10.1016/j.ijfoodmicro.2016.03.025