Improved performance of CsPbBr<sub>3</sub> perovskite light-emitting devices by both boundary and interface defects passivation

Nanoscale - Tập 10 Số 38 - Trang 18315-18322
Li Song1,2,3,4,5, Xiaoyang Guo1,2,6,3,4, Yongsheng Hu1,2,6,3,4, Ying Lv1,2,6,3,4, Jie Lin1,2,6,3,4, Yi Fan1,2,6,3,4, Nan Zhang1,2,6,3,4, Xingyuan Liu1,2,6,3,4
1Changchun 130033
2Changchun Institute of Optics
3Fine Mechanics and Physics
4State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
5University of Chinese Academy of Sciences, Beijing, 100049, China
6Chinese Academy of sciences

Tóm tắt

Significantly enhanced luminance and current efficiency for inorganic light-emitting devices have been obtained by tetrabutylammonium bromide (TBAB) as both additive into perovskite precursors and interface modification.

Từ khóa


Tài liệu tham khảo

Zhao, 2017, Light: Sci. Appl., 6, e16243, 10.1038/lsa.2016.243

Gu, 2017, Light: Sci. Appl., 6, e17090, 10.1038/lsa.2017.90

Matsushima, 2016, Adv. Mater., 28, 10275, 10.1002/adma.201603126

Kim, 2016, Proc. Natl. Acad. Sci. U. S. A., 113, 11694, 10.1073/pnas.1607471113

Shan, 2017, Small, 13, 1701770, 10.1002/smll.201701770

Sutherland, 2016, Nat. Photonics, 10, 295, 10.1038/nphoton.2016.62

Stranks, 2013, Science, 342, 341, 10.1126/science.1243982

Zhang, 2015, ACS Nano, 9, 4533, 10.1021/acsnano.5b01154

Li, 2016, Adv. Funct. Mater., 26, 2435, 10.1002/adfm.201600109

Kumawat, 2015, ACS Appl. Mater. Interfaces, 7, 13119, 10.1021/acsami.5b02159

Cho, 2015, Science, 350, 1222, 10.1126/science.aad1818

Wang, 2016, Nat. Photonics, 10, 699, 10.1038/nphoton.2016.185

Yu, 2016, Adv. Mater., 28, 6906, 10.1002/adma.201601105

Jaramillo-Quintero, 2015, J. Phys. Chem. Lett., 6, 1883, 10.1021/acs.jpclett.5b00732

Shan, 2017, J. Mater. Chem. C, 5, 4565, 10.1039/C6TC05578H

Ling, 2016, Adv. Mater., 28, 8983, 10.1002/adma.201602513

Wei, 2016, Nanoscale, 8, 18021, 10.1039/C6NR05330K

Amgar, 2016, Adv. Funct. Mater., 26, 8576, 10.1002/adfm.201603752

Wang, 2017, ACS Nano, 11, 2689, 10.1021/acsnano.6b07574

Song, 2015, Adv. Mater., 27, 7162, 10.1002/adma.201502567

Li, 2017, Adv. Mater., 29, 1603885, 10.1002/adma.201603885

Li, 2015, Adv. Mater., 27, 5196, 10.1002/adma.201502490

Lin, 2016, Nanoscale, 8, 19846, 10.1039/C6NR08195A

Song, 2017, J. Phys. Chem. Lett., 8, 4148, 10.1021/acs.jpclett.7b01733

Lee, 2017, J. Phys. Chem. Lett., 8, 1784, 10.1021/acs.jpclett.7b00372

Chih, 2016, Adv. Mater., 28, 8687, 10.1002/adma.201602974

Wang, 2015, Adv. Mater., 27, 2311, 10.1002/adma.201405217

Cho, 2017, Adv. Mater., 29, 1700579, 10.1002/adma.201700579

Zhao, 2016, J. Phys. Chem. Lett., 7, 4259, 10.1021/acs.jpclett.6b02160

Zhao, 2017, ACS Nano, 11, 3957, 10.1021/acsnano.7b00404

Xiao, 2017, Nat. Photonics, 11, 108, 10.1038/nphoton.2016.269

Yuan, 2016, Nat. Nanotechnol., 11, 872, 10.1038/nnano.2016.110

Nie, 2015, Science, 347, 522, 10.1126/science.aaa0472

D'Innocenzo, 2014, J. Am. Chem. Soc., 136, 17730, 10.1021/ja511198f

Pazos-Outón, 2016, Science, 351, 1430, 10.1126/science.aaf1168

Yamada, 2015, J. Am. Chem. Soc., 137, 10456, 10.1021/jacs.5b04503

Wu, 2016, Adv. Energy Mater., 6, 1600551, 10.1002/aenm.201600551

Zhang, 2017, Adv. Mater., 29, 1606405, 10.1002/adma.201606405

Zhang, 2017, Nat. Commun., 8, 15640, 10.1038/ncomms15640

Yuan, 2017, Phys. Chem. Chem. Phys., 19, 8934, 10.1039/C6CP08824D

Veldhuis, 2016, Adv. Mater., 28, 6804, 10.1002/adma.201600669

Kumar, 2016, ACS Nano, 10, 9720, 10.1021/acsnano.6b05775

Xing, 2016, ACS Nano, 10, 6623, 10.1021/acsnano.6b01540

Puscher, 2017, Adv. Energy Mater., 7, 1602283, 10.1002/aenm.201602283

Hong, 2016, Adv. Mater., 28, 8029, 10.1002/adma.201601024

Zhang, 2016, Nano Lett., 16, 1415, 10.1021/acs.nanolett.5b04959