Improved modelling of lifestyle changes in Integrated Assessment Models: Cross-disciplinary insights from methodologies and theories

Energy Strategy Reviews - Tập 26 - Trang 100420 - 2019
Nicole J. van den Berg1, Andries F. Hof1,2, Lewis Akenji3, Oreane Edelenbosch4,5, Mariësse A.E. van Sluisveld2, Vanessa Timmer1,6, Detlef P. van Vuuren1,2
1Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
2PBL Netherlands Environment Assessment Agency, The Hague, the Netherlands
3Department of Consumer Economics, University of Helsinki, Helsinki, Finland
4Department of Management and Economics, Politecnico di Milano, Milan, Italy
5RFF-CMCC European Institute on Economics and the Environment, Milan, Italy
6One Earth, Vancouver, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rose, 2017, The Paris Agreement and next steps in limiting global warming, Clim. Change, 142, 255, 10.1007/s10584-017-1935-y

Edelenbosch, 2018

van Vuuren, 2018, Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies, Nat. Clim. Chang., 8, 391, 10.1038/s41558-018-0119-8

Grubler, 2018, A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies, Nat. Energy, 3, 515, 10.1038/s41560-018-0172-6

Clarke, 2014

Faber, 2012

Hallström, 2015, Environmental impact of dietary change: a systematic review, J. Clean. Prod., 91, 1, 10.1016/j.jclepro.2014.12.008

van Sluisveld, 2016, Exploring the implications of lifestyle change in 2°C mitigation scenarios using the IMAGE integrated assessment model, Technol. Forecast. Soc. Chang., 102, 309, 10.1016/j.techfore.2015.08.013

van de Ven, 2017, 1

Stehfest, 2009, Climate benefits of changing diet, Clim. Change, 95, 83, 10.1007/s10584-008-9534-6

Röös, 2016, Protein futures for Western Europe: potential land use and climate impacts in 2050, Reg. Environ. Chang., 17, 367, 10.1007/s10113-016-1013-4

Anable, 2012, Modelling transport energy demand: a socio-technical approach, Energy Policy, 41, 125, 10.1016/j.enpol.2010.08.020

Weyant, 2017, Some contributions of integrated assessment models of global climate change, Rev. Environ. Econ. Policy, 11, 115, 10.1093/reep/rew018

Gifford, 2011, Behavioral dimensions of climate change: drivers, responses, barriers, and interventions, Wiley Interdiscip. Rev. Clim. Change, 2, 801, 10.1002/wcc.143

Samadi, 2017, Sufficiency in energy scenario studies: taking the potential benefits of lifestyle changes into account, Technol. Forecast. Soc. Chang., 124, 126, 10.1016/j.techfore.2016.09.013

Creutzig, 2018, Towards demand-side solutions for mitigating climate change, Nat. Clim. Chang., 8, 260, 10.1038/s41558-018-0121-1

Akenji, 2016

Vergragt, 2016

2016

Bauer, 2017, Shared socio-economic pathways of the energy sector – quantifying the narratives, Glob. Environ. Chang., 42, 316, 10.1016/j.gloenvcha.2016.07.006

Bijl, 2017, A physically-based model of long-term food demand, Glob. Environ. Chang., 45, 47, 10.1016/j.gloenvcha.2017.04.003

McCollum, 2017, Improving the behavioral realism of global integrated assessment models: an application to consumers' vehicle choices, Transp. Res. Part D Transp. Environ., 55, 322, 10.1016/j.trd.2016.04.003

Rogers, 2010

Li, 2017, Actors behaving badly: exploring the modelling of non-optimal behaviour in energy transitions, Energy Strategy Rev., 15, 57, 10.1016/j.esr.2017.01.002

Bjelle, 2018, Climate change mitigation potential of Norwegian households and the rebound effect, J. Clean. Prod., 172, 208, 10.1016/j.jclepro.2017.10.089

Frenette, 2017, Meat, dairy and climate change: assessing the long-term mitigation potential of alternative agri-food consumption patterns in Canada, Environ. Model. Assess., 22

Jones, 2011, Quantifying carbon footprint reduction opportunities for U.S. households and communities, Environ. Sci. Technol., 45, 4088, 10.1021/es102221h

Moreau, 2017

Neuvonen, 2014, Low-carbon futures and sustainable lifestyles: a backcasting scenario approach, Futures, 58, 66, 10.1016/j.futures.2014.01.004

Li, 2017, Modelling energy transitions for climate targets under landscape and actor inertia, Environ. Innov. Soc. Transit., 24, 106, 10.1016/j.eist.2016.08.002

Geisendorf, 2017, The effect of green investments in an agent-based climate-economic model, Environ. Model. Assess., 22, 323, 10.1007/s10666-017-9549-3

Ala-Mantila, 2014, Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: a multivariate analysis, Ecol. Econ., 104, 129, 10.1016/j.ecolecon.2014.04.019

Babutsidze, 2018, Look at me saving the planet! The imitation of visible green behavior and its impact on the climate value-action gap, Ecol. Econ., 146, 290, 10.1016/j.ecolecon.2017.10.017

Ajzen, 1991, The theory of planned behavior, Organ. Behav. Hum. Decis. Process., 50, 179, 10.1016/0749-5978(91)90020-T

Cornelius, 2014, Increasing energy- and greenhouse gas-saving behaviors among adolescents: a school-based cluster-randomized controlled trial, Energy Effic., 7, 217, 10.1007/s12053-013-9219-5

Poortinga, 2012, Individual-motivational factors in the acceptability of demand-side and supply-side measures to reduce carbon emissions, Energy Policy, 48, 812, 10.1016/j.enpol.2012.06.029

Dolan, 2010

Morris, 2012

Petty, 1986, 1

UNEP, 2015

Truelove, 2012, Perceptions of behaviors that cause and mitigate global warming and intentions to perform these behaviors, J. Environ. Psychol., 32, 246, 10.1016/j.jenvp.2012.04.002

Obradovich, 2016, Collective responsibility amplifies mitigation behaviors, Clim. Change, 137, 307, 10.1007/s10584-016-1670-9

Löschel, 2017, Revealed preferences for voluntary climate change mitigation when the purely individual perspective is relaxed – evidence from a framed field experiment, J. Behav. Exp. Econ., 67, 149, 10.1016/j.socec.2016.12.007

Wang, 2018, The role of attitudinal motivations and collective efficacy on Chinese consumers' intentions to engage in personal behaviors to mitigate climate change, J. Soc. Psychol., 158, 51, 10.1080/00224545.2017.1302401

Defra, 2008

Mattauch, 2014, Happy or liberal? Making sense of behavior in transport policy design, Transp. Res. Part D Transp. Environ., 45, 64, 10.1016/j.trd.2015.08.006

2011

Vergragt, 2016, Transitions to sustainable consumption and production in cities, J. Clean. Prod., 134, 1, 10.1016/j.jclepro.2016.05.050

Quam, 2017, Assessing greenhouse gas emissions and health co-benefits: a structured review of lifestyle-related climate change mitigation strategies, Int. J. Environ. Res. Public Health, 14, 10.3390/ijerph14050468

Stern, 2017, Limiting climate change: what's most worth doing?, Environ. Res. Lett., 12, 10.1088/1748-9326/aa8467

Ala-Mantila, 2016, To each their own? The greenhouse gas impacts of intra-household sharing in different urban zones, J. Clean. Prod., 135, 356, 10.1016/j.jclepro.2016.05.156

Jackson, 2005

Webb, 2013, Society and a low-carbon future: individual behaviour change or new social values and priorities?, Earth Environ. Sci. Trans. R. Soc. Edinb., 103, 157

Quinet, 2004

Small, 2007

van Wee, 2013

Von Borgstede, 2013, Public attitudes to climate change and carbon mitigation-Implications for energy-associated behaviours, Energy Policy, 57, 182, 10.1016/j.enpol.2013.01.051

Stern, 1993, Value orientations, gender, and environmental concern, Environ. Behav., 25, 322, 10.1177/0013916593255002

Akenji, 2012

Hanley, 2013, Economics of a low-carbon future, Earth Environ. Sci. Trans. R. Soc. Edinb., 103, 149

Dubois, 2015, Consumption and lifestyles: an alternative perspective on climate change mitigation policies, Natures Sci. Soc., 23, S76, 10.1051/nss/2015020

Raihani, 2011, Uncertainty, rationality and cooperation in the context of climate change, Clim. Change, 108, 47, 10.1007/s10584-010-0014-4

Lacroix, 2015, An alternative policy evaluation of the British Columbia carbon tax: broadening the application of Elinor Ostrom's design principles for managing common-pool resources, Ecol. Soc., 20, 10.5751/ES-07519-200238

Thaler, 1999

Backhaus, 2012

Girod, 2014, Climate policy through changing consumption choices: options and obstacles for reducing greenhouse gas emissions, Glob. Environ. Chang., 25, 5, 10.1016/j.gloenvcha.2014.01.004

Unilever, 2013

Baiocchi, 2015, A spatial typology of human settlements and their CO2 emissions in England, Glob. Environ. Chang., 34, 13, 10.1016/j.gloenvcha.2015.06.001

Lin, 2013, The gap between global issues and personal behaviors: pro-environmental behaviors of citizens toward climate change in Kaohsiung, Taiwan, Mitig. Adapt. Strategies Glob. Change, 18, 773, 10.1007/s11027-012-9387-1

Creutzig, 2016, 173

Nakata, 2011, Application of energy system models for designing a low-carbon society, Prog. Energy Combust. Sci., 37, 462, 10.1016/j.pecs.2010.08.001

Ramaswami, 2012, Quantifying carbon mitigation wedges in U.S. Cities: near-term strategy analysis and critical review, Environ. Sci. Technol., 46, 3629, 10.1021/es203503a

Girod, 2013, Influence of travel behavior on global CO2emissions, Transp. Res. Part A Policy Pract., 50, 183, 10.1016/j.tra.2013.01.046

Brand, 2017, Modeling the uptake of plug-in vehicles in a heterogeneous car market using a consumer segmentation approach, Transp. Res. Part A Policy Pract., 97, 121, 10.1016/j.tra.2017.01.017