Improved electrocompetence and metabolic engineering of Clostridium pasteurianum reveals a new regulation pattern of glycerol fermentation

Engineering in Life Sciences - Tập 19 Số 6 - Trang 412-422 - 2019
Rebekka Schmitz1, Wael Sabra1, Philipp Arbter1, Yaeseong Hong1, Tyll Utesch1, An‐Ping Zeng1
1Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany

Tóm tắt

AbstractClostridium pasteurianum produces industrially valuable chemicals such as n‐butanol and 1,3‐propanediol from fermentations of glycerol and glucose. Metabolic engineering for increased yields of selective compounds is not well established in this microorganism. In order to study carbon fluxes and to selectively increase butanol yields, we integrated the latest advances in genome editing to obtain an electrocompetent Clostridium pasteurianum strain for further engineering. Deletion of the glycerol dehydratase large subunit (dhaB) using an adapted S. pyogenes Type II CRISPR/Cas9 nickase system resulted in a 1,3‐propanediol‐deficient mutant producing butanol as the main product. Surprisingly, the mutant was able to grow on glycerol as the sole carbon source. In spite of reduced growth, butanol yields were highly increased. Metabolic flux analysis revealed an important role of the newly identified electron bifurcation pathway for crotonyl‐CoA to butyryl‐CoA conversion in the regulation of redox balance. Compared to the parental strain, the electron bifurcation pathway flux of the dhaB mutant increased from 8 to 46% of the overall flux from crotonyl‐CoA to butyryl‐CoA and butanol, indicating a new, 1,3‐propanediol‐independent pattern of glycerol fermentation in Clostridium pasteurianum.

Từ khóa


Tài liệu tham khảo

10.1002/bit.22003

10.1016/j.procbio.2012.05.012

10.1016/j.biombioe.2014.07.018

10.1007/s00253-011-3629-0

10.1186/1754-6834-5-48

10.1007/3-540-45736-4_11

10.1016/j.biombioe.2014.10.015

10.1007/s002530051523

10.1002/elsc.201600073

10.1002/elsc.201600062

10.1002/elsc.201400140

10.1038/srep06961

10.1016/j.ymben.2017.01.009

10.1186/s12934-017-0678-9

10.1007/s10295-011-1077-6

10.1038/sj.jim.7000155

10.1186/1754-6834-6-50

10.1002/elsc.201600058

10.1002/elsc.201700198

10.1007/s00253-011-3247-x

10.1007/s00253-009-2003-y

10.1186/s12934-016-0497-4

10.1007/s00253-014-5588-8

10.1016/0141-0229(93)90008-P

10.1007/BF01464731

Fu H., 2016, Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose, Metab. Eng.

10.1016/j.biotechadv.2017.01.007

10.1016/j.biortech.2016.04.020

10.1073/pnas.1004716107

10.1186/s12934-015-0406-2

10.1038/srep25666

10.1186/s13068-014-0163-1

10.1128/AEM.02128-16

10.1186/s12934-015-0217-5

10.1016/j.jbiotec.2017.05.001

10.1016/j.biosystems.2011.02.002

10.1007/BF00183234

10.1016/B978-012666260-3/50002-9

10.1002/bit.260430104

10.1016/j.anaerobe.2017.09.001

Richards D. F., 1988, Restriction endonucleases in Clostridium pasteurianum ATCC 6013 and C. thermohydrosulfuricum DSM 568, J. Gen. Microbiol., 134, 3151

10.1128/AEM.01354-16

10.1002/biot.201600053

10.1002/elsc.201100058

10.1128/jb.176.5.1443-1450.1994

10.1128/JB.183.5.1748-1754.2001

10.1023/A:1021911217270

10.1016/j.bbabio.2012.07.002

10.1046/j.1365-2672.1998.00374.x

10.1186/2191-0855-3-58

10.1016/j.mimet.2009.05.004

10.1016/j.mimet.2009.10.018