Improved efficiency of Sedum lineare (Crassulaceae) in remediation of arsenic-contaminated soil by phosphate-dissolving strain P-1 in association with phosphate rock

Environmental Geochemistry and Health - Tập 45 - Trang 8317-8336 - 2023
Shaohui Yang1, Rong Yin1, Chen Wang1, Jiehua Wang1
1School of Environmental Science and Engineering, Tianjin University, Tianjin, China

Tóm tắt

The selection of appropriate plants and growth strategies is a key factor in improving the efficiency and universal applicability of phytoremediation. Sedum lineare grows rapidly and tolerates multiple adversities. The effects of inoculation of Acinetobacter sp. phosphate solubilizing bacteria P-1 and application of phosphate rock (PR) as additives on the remediation efficiency of As-contaminated soil by S. lineare were investigated. Compared with the control, both the single treatment and the combination of inoculation with strain P-1 and application of PR improved the biomass by 30.7–395.5%, chlorophyll content by 48.1–134.8%, total protein content by 12.5–92.4% and total As accumulation by 45.1–177.5%, and reduced the As-induced oxidative damage. Inoculation with strain P-1 increased the activities of superoxide dismutases and catalases of S. lineare under As stress, decreased the accumulation of reactive oxygen species in plant tissues and promoted the accumulation of As in roots. In contrast, simultaneous application of PR decreased As concentration in S. lineare tissues, attenuated As-induced lipid peroxidation and improved As transport to shoots. In addition, the combined application showed the best performance in improving resistance and biomass, which significantly increased root length by 149.1%, shoot length by 33%, fresh weight by 395.5% and total arsenic accumulation by 159.2%, but decreased the malondialdehyde content by 89.1%. Our results indicate that the combined application of strain P-1 and PR with S. lineare is a promising bioremediation strategy to accelerate phytoremediation of As-contaminated soils.

Tài liệu tham khảo

Abei, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3 Abdul, H. B. O., & Thomas, B. V. (2009). Translocation and bioaccumulation of trace metals in desert plants of Kuwait Governorates. Research Journal of Environmental Sciences, 3, 581–587. https://doi.org/10.3923/rjes.2009.581.587 Ahemad, M. (2019). Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. Arabian Journal of Chemistry, 12, 1365–1377. https://doi.org/10.1016/j.arabjc.2014.11.020 Ahmad, A., Khan, W. U., Shah, A. A., Yasin, N. A., Naz, S., Ali, A., Tahir, A., & Batool, A. I. (2021). Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica juncea. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128384 Al-Ansari, M. M. (2022). Influence of blue light on effective removal of arsenic by photosynthetic bacterium Rhodobacter sp. BT18. Chemosphere, 292, 133399. https://doi.org/10.1016/j.chemosphere.2021.133399 Ali, S., Tyagi, A., Mushtaq, M., Al-Mahmoudi, H., & Bae, H. (2022). Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture. Environmental Pollution, 300, 118940. https://doi.org/10.1016/j.envpol.2022.118940 Anand, V., Kaur, J., Srivastava, S., Bist, V., Singh, P., & Srivastava, S. (2022). Arsenotrophy: A pragmatic approach for arsenic bioremediation. Journal of Environmental Chemical Engineering, 10, 107528. https://doi.org/10.1016/j.jece.2022.107528 Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1 Azeem, W., Ashraf, M., Shahzad, S. M., Imtiaz, M., Akhtar, M., & Rizwan, M. S. (2017). Phosphate-arsenate relations to affect arsenic concentration in plant tissues, growth, and antioxidant efficiency of sunflower (Helianthus annuus L.) under arsenic stress. Environmental Science and Pollution Research, 24, 24376–24386. https://doi.org/10.1007/s11356-017-9977-2 Aziz, T., Rahmatullah, M. M. A., Sabir, M., & Kanwal, S. (2011). Categorization of Brassica cultivars for phosphorus acquisition from phosphate rock on basis of growth and ionic parameters. Journal of Plant Nutrition, 34, 522–533. https://doi.org/10.1080/01904167.2011.538114 Babu, A. G., Shim, J., Bang, K. S., Shea, P. J., & Oh, B. T. (2014). Trichoderma virens PDR-28: A heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. Journal of Environmental Management, 132, 129–134. https://doi.org/10.1016/j.jenvman.2013.10.009 Bali, A. S., & Sidhu, G. (2021). Arsenic acquisition, toxicity and tolerance in plants-From physiology to remediation: A review. Chemosphere, 283, 131050. https://doi.org/10.1016/j.chemosphere.2021.131050 Bart, S., Motelica-Heino, M., Miard, F., Joussein, E., Soubrand, M., Bourgerie, S., & Morabito, D. (2016). Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. CATENA, 136, 44–52. https://doi.org/10.1016/j.catena.2015.07.008 Bolan, N., Mahimairaja, S., Kunhikrishnan, A., & Choppala, G. (2013). Phosphorus-arsenic interactions in variable-charge soils in relation to arsenic mobility and bioavailability. Science of the Total Environment, 463, 1154–1162. https://doi.org/10.1016/j.scitotenv.2013.04.016 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999 Bruno, L. B., Anbuganesan, V., Karthik, C., Tripti Kumar, A., Banu, J. R., Freitas, H., & Rajkumar, M. (2021). Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus. Journal of Environmental Management, 289, 112553. https://doi.org/10.1016/j.jenvman.2021.112553 Cao, X. D., & Ma, L. Q. (2004). Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environmental Pollution, 132, 435–442. https://doi.org/10.1016/j.envpol.2004.05.019 Chattopadhyay, A., Singh, A. P., Kasote, D., Sen, I., & Regina, A. (2021). Effect of phosphorus application on arsenic species accumulation and co-deposition of polyphenols in rice grain: Phyto and food safety evaluation. Plants-Basel, 10(2), 281. https://doi.org/10.3390/plants10020281 Czarny, J., Staninska-Pieta, J., Piotrowska-Cyplik, A., Juzwa, W., Wolniewicz, A., Marecik, R., Lawniczak, L., & Chrzanowski, L. (2020). Acinetobacter sp. as the key player in diesel oil degrading community exposed to PAHs and heavy metals. Journal of Hazardous Materials, 383, 121168. https://doi.org/10.1016/j.jhazmat.2019.121168 de Medeiros, E. V., Silva, A. O., Duda, G. P., Dos Santos, U. J., & de Souza, A. J. (2019). The combination of Arachis pintoi green manure and natural phosphate improves maize growth, soil microbial community structure and enzymatic activities. Plant and Soil, 435, 175–185. https://doi.org/10.1007/s11104-018-3887-z Deng, F. L., Liu, X., Chen, Y. S., Rathinasabapathi, B., Rensing, C., Chen, J., Bi, J., Xiang, P., & Ma, L. (2020). Aquaporins mediated arsenite transport in plants: Molecular mechanisms and applications in crop improvement. Critical Reviews in Environmental Science and Technology, 50, 1613–1639. https://doi.org/10.1080/10643389.2019.1662704 Ditusa, S. F., Fontenot, E. B., Wallace, R. W., Silvers, M. A., Steele, T. N., Elnagar, A. H., Dearman, K. M., & Smith, A. P. (2016). A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. New Phytologist, 209, 762–772. https://doi.org/10.1111/nph.13472 Du, Y., Wu, Q., Kong, D., Shi, Y., Huang, X., Luo, D., Chen, Z., Xiao, T., & Leung, J. Y. S. (2020). Accumulation and translocation of heavy metals in water hyacinth: Maximising the use of green resources to remediate sites impacted by e-waste recycling activities. Ecological Indicators, 115, 106384. https://doi.org/10.1016/j.ecolind.2020.106384 Feng, T. C., Lin, H. P., Guo, Q. F., & Feng, Y. Y. (2014). Influence of an arsenate-reducing and polycyclic aromatic hydrocarbons-degrading Pseudomonas isolate on growth and arsenic accumulation in Pteris vittata and removal of phenanthrene. International Biodeterioration and Biodegradation, 94, 12–18. https://doi.org/10.1016/j.ibiod.2014.06.005 Fiske, C. H., & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66, 375–400. https://doi.org/10.1016/S0021-9258(18)84756-1 Franchi, E., Cosmina, P., Pedron, F., Rosellini, I., Barbafieri, M., Petruzzelli, G., & Vocciante, M. (2019). Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria. Science of the Total Environment, 655, 328–336. https://doi.org/10.1016/j.scitotenv.2018.11.242 Ghosh, P., Rathinasabapathi, B., & Ma, L. Q. (2011). Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L. Bioresource Technology, 102, 8756–8761. https://doi.org/10.1016/j.biortech.2011.07.064 Gomes, M. P., Carvalho, M., Carvalho, G. S., Marques, T. C. L. L., Garcia, Q. S., Guilherme, L. R. G., & Soares, A. M. (2013). Phosphorus improves arsenic phytoremediation by Anadenanthera peregrina by alleviating induced oxidative stress. International Journal of Phytoremediation, 15, 633–646. https://doi.org/10.1080/15226514.2012.723064 Gong, Y., Zhang, X., Li, H., Zhang, X., He, S., & Miao, Y. (2021). A comparison of the growth status, rainfall retention and purification effects of four green roof plant species. Journal of Environmental Management, 278, 111451. https://doi.org/10.1016/j.jenvman.2020.111451 Guarino, F., Miranda, A., Castiglione, S., & Cicatelli, A. (2020). Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere, 251, 126310. https://doi.org/10.1016/j.chemosphere.2020.126310 Gupta, D. K., Chatterjee, S., Datta, S., Veer, V., & Walther, C. (2014). Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere, 108, 134–144. https://doi.org/10.1016/j.chemosphere.2014.01.030 Gupta, P., Kumar, V., Usmani, Z., Rani, R., Chandra, A., & Gupta, V. K. (2019). A comparative evaluation towards the potential of Klebsiella sp. and Enterobacter sp. in plant growth promotion, oxidative stress tolerance and chromium uptake in Helianthus annuus (L.). Journal of Hazardous Materials, 377, 391–398. https://doi.org/10.1016/j.jhazmat.2019.05.054 Ha, N., Ha, N. T., Nga, T., Minh, N. N., Anh, B., Hang, N., Duc, N. A., Nhuan, M. T., & Kim, K. W. (2019). Uptake of arsenic and heavy metals by native plants growing near Nui Phao multi-metal mine, northern Vietnam. Applied Geochemistry, 108, 104368. https://doi.org/10.1016/j.apgeochem.2019.104368 Hua, C. Y., Chen, J. X., Cao, Y., Li, H. B., Chen, Y. S., & Ma, L. (2020). Pteris vittata coupled with phosphate rock effectively reduced As and Cd uptake by water spinach from contaminated soil. Chemosphere, 247, 125916. https://doi.org/10.1016/j.chemosphere.2020.125916 Hudson-Edwards, K. A., Houghton, S. L., & Osborn, A. (2004). Extraction and analysis of arsenic in soils and sediments. Trac-Trends in Analytical Chemistry, 23, 745–752. https://doi.org/10.1016/j.trac.2004.07.010 Irshad, S., Xie, Z. M., Kamran, M., Nawaz, A., Faheem, M. S., Gulzar, H., Saleem, M. H., Rizwan, M., Malik, Z., Parveen, A., & Ali, S. (2021). Biochar composite with microbes enhanced arsenic biosorption and phytoextraction by Typha latifolia in hybrid vertical subsurface flow constructed wetland. Environmental Pollution, 291, 118269. https://doi.org/10.1016/j.envpol.2021.118269 Jankong, P., & Visoottiviseth, P. (2008). Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere, 72, 1092–1097. https://doi.org/10.1016/j.chemosphere.2008.03.040 Kabata-Pendias, A. (2004). Soil-plant transfer of trace elements—An environmental issue. Geoderma, 122, 143–149. https://doi.org/10.1016/j.geoderma.2004.01.004 Kamran, M. A., Xu, R., Li, J., Jiang, J., & Nkoh, J. N. (2018). Effect of different phosphorus sources on soybean growth and arsenic uptake under arsenic stress conditions in an acidic ultisol. Ecotoxicology and Environmental Safety, 165, 11–18. https://doi.org/10.1016/j.ecoenv.2018.08.092 Khan, M. A., Yasmin, H., Shah, Z. A., Rinklebe, J., Alyemeni, M. N., & Ahmad, P. (2022). Co application of biofertilizer and zinc oxide nanoparticles upregulate protective mechanism culminating improved arsenic resistance in maize. Chemosphere, 294, 133796. https://doi.org/10.1016/j.chemosphere.2022.133796 Khan, M., Khan, N. A., Jahan, B., Goyal, V., Hamid, J., Khan, S., Iqbal, N., Alamri, S., & Siddiqui, M. H. (2021). Phosphorus supplementation modulates nitric oxide biosynthesis and stabilizes the defence system to improve arsenic stress tolerance in mustard. Plant Biology, 23, 152–161. https://doi.org/10.1111/plb.13211 Khan, W. U., Ahmad, S. R., Yasin, N. A., Ali, A., & Ahmad, A. (2017). Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils. International Journal of Phytoremediation, 19, 514–521. https://doi.org/10.1080/15226514.2016.1254154 Khan, W. U., Yasin, N. A., Ahmad, S. R., Ali, A., Ahmad, A., Akram, W., & Faisal, M. (2018). Role of Burkholderia cepacia CS8 in Cd-stress alleviation and phytoremediation by Catharanthus roseus. International Journal of Phytoremediation, 20, 581–592. https://doi.org/10.1080/15226514.2017.1405378 Khanna, K., Kohli, S. K., Kumar, P., Ohri, P., Bhardwaj, R., Alam, P., & Ahmad, P. (2022). Arsenic as hazardous pollutant: Perspectives on engineering remediation tools. Science of the Total Environment, 838, 155870. https://doi.org/10.1016/j.scitotenv.2022.155870 Kim, M. S., Lee, S. H., & Kim, J. G. (2021). Evaluation of factors affecting arsenic uptake by Brassica juncea in alkali soil after biochar application using partial least squares path modeling (PLS-PM). Chemosphere, 275, 130095. https://doi.org/10.1016/j.chemosphere.2021.130095 Kono, Y. (1978). Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Archives of Biochemistry and Biophysics, 186, 189–195. https://doi.org/10.1016/0003-9861(78)90479-4 Lafabrie, C., Major, K. M., Major, C. S., & Cebrian, J. (2011). Arsenic and mercury bioaccumulation in the aquatic plant, Vallisneria neotropicalis. Chemosphere, 82, 1393–1400. https://doi.org/10.1016/j.chemosphere.2010.11.070 Lessl, J. T., & Ma, L. Q. (2013). Sparingly-soluble phosphate rock induced significant plant growth and arsenic uptake by Pteris vittata from three contaminated soils. Environmental Science and Technology, 47, 5311–5318. https://doi.org/10.1021/es400892a Liu, X., Feng, H. Y., Fu, J. W., Sun, D., Cao, Y., Chen, Y. S., Xiang, P., Liu, Y. G., & Ma, L. Q. (2018). Phytate promoted arsenic uptake and growth in arsenic-hyperaccumulator Pteris vittata by upregulating phosphorus transporters. Environmental Pollution, 241, 240–246. https://doi.org/10.1016/j.envpol.2018.05.054 Ma, L. Q., Komar, K. M., Tu, C., Zhang, W. H., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579. https://doi.org/10.1038/35054664 Ma, Y., Prasad, M., Rajkumar, M., & Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29, 248–258. https://doi.org/10.1016/j.biotechadv.2010.12.001 Madejon, P., Maranon, T., Navarro-Fernandez, C. M., Dominguez, M. T., Alegre, J. M., Robinson, B., & Murillo, J. M. (2017). Potential of Eucalyptus camaldulensis for phytostabilization and biomonitoring of trace-element contaminated soils. PLoS ONE, 12, e180240. https://doi.org/10.1371/journal.pone.0180240 Manzoor, M., Abid, R., Rathinasabapathi, B., De Oliveira, L. M., Da Silva, E., Deng, F. L., Rensing, C., Arshad, M., Gul, I., Xiang, P., & Ma, L. Q. (2019). Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil. Science of the Total Environment, 660, 18–24. https://doi.org/10.1016/j.scitotenv.2019.01.013 Marwa, N., Singh, N., Srivastava, S., Saxena, G., & Pandey, V. (2019). Characterizing the hypertolerance potential of two indigenous bacterial strains (Bacillus flexus and Acinetobacter junii) and their efficacy in arsenic bioremediation. Journal of Applied Microbiology, 126, 1117–1127. https://doi.org/10.1111/jam.14179 Mello, I. S., Targanski, S., Pietro-Souza, W., Frutuoso, S. F., Terezo, A. J., & Soares, M. A. (2020). Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. Ecotoxicology and Environmental Safety, 202, 110818. https://doi.org/10.1016/j.ecoenv.2020.110818 Mesa, J., Rodriguez-Llorente, I. D., Pajuelo, E., Piedras, J., Caviedes, M. A., Redondo-Gomez, S., & Mateos-Naranjo, E. (2015). Moving closer towards restoration of contaminated estuaries: Bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native Spartina maritima. Journal of Hazardous Materials, 300, 263–271. https://doi.org/10.1016/j.jhazmat.2015.07.006 Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. Fems Microbiology Letters, 170, 265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x Ning, Z., Xiao, T., & Xiao, E. (2015). Antimony in the soil-plant system in an Sb mining/smelting area of southwest China. International Journal of Phytoremediation, 17, 1081–1089. https://doi.org/10.1080/15226514.2015.1021955 Patel, A., Tiwari, S., & Prasad, S. M. (2018). Toxicity assessment of arsenate and arsenite on growth, chlorophyll a fluorescence and antioxidant machinery in Nostoc muscorum. Ecotoxicology and Environmental Safety, 157, 369–379. https://doi.org/10.1016/j.ecoenv.2018.03.056 Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya, 17, 362–370. Piracha, M. A., Ashraf, M., Shahzad, S. M., Imtiaz, M., Arif, M. S., Rizwan, M. S., Aziz, A., Tu, S., Albasher, G., Alkahtani, S., & Shakoor, A. (2022). Alteration in soil arsenic dynamics and toxicity to sunflower (Helianthus annuus L) in response to phosphorus in different textured soils. Chemosphere, 287, 132406. https://doi.org/10.1016/j.chemosphere.2021.132406 Prum, C., Dolphen, R., & Thiravetyan, P. (2018). Enhancing arsenic removal from arsenic-contaminated water by Echinodorus cordifolius−endophytic Arthrobacter creatinolyticus interactions. Journal of Environmental Management, 213, 11–19. https://doi.org/10.1016/j.jenvman.2018.02.060 Rafique, M., Ortas, I., Rizwan, M., Chaudhary, H. J., Gurmani, A. R., & Munis, M. (2020). Residual effects of biochar and phosphorus on growth and nutrient accumulation by maize (Zea mays L.) amended with microbes in texturally different soils. Chemosphere, 238, 124710. https://doi.org/10.1016/j.chemosphere.2019.124710 Sarath, N. G., Shackira, A. M., El-Serehy, H. A., Hefft, D. I., & Puthur, J. T. (2022). Phytostabilization of arsenic and associated physio-anatomical changes in Acanthus ilicifolius L. Environmental Pollution, 298, 118828. https://doi.org/10.1016/j.envpol.2022.118828 Sarma, H., Sonowal, S., & Prasad, M. (2019). Plant-microbiome assisted and biochar-amended remediation of heavy metals and polyaromatic compounds horizontal line a microcosmic study. Ecotoxicology and Environmental Safety, 176, 288–299. https://doi.org/10.1016/j.ecoenv.2019.03.081 Shan, Q., Liu, X., Zhang, J., Chen, G., Liu, S., Zhang, P., & Wang, Y. (2011). Analysis on the tolerance of four ecotype plants against copper stress in soil. Procedia Environmental Sciences, 10, 1802–1810. https://doi.org/10.1016/j.proenv.2011.09.282 Shi, J. D., Zhao, D., Ren, F. T., & Huang, L. (2023). Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment. Science of the Total Environment, 871, 161768. https://doi.org/10.1016/j.scitotenv.2023.161768 Silambarasan, S., Logeswari, P., Vangnai, A. S., Kamaraj, B., & Cornejo, P. (2022). Plant growth-promoting actinobacterial inoculant assisted phytoremediation increases cadmium uptake in Sorghum bicolor under drought and heat stresses. Environmental Pollution, 307, 119489. https://doi.org/10.1016/j.envpol.2022.119489 Silva, U. C., Cuadros-Orellana, S., Silva, D., Freitas, L. F., Fernandes, A. C., Leite, L. R., Oliveira, C. A., & Dos Santos, V. L. (2021). Genomic and phenotypic insights into the potential of rock phosphate solubilizing bacteria to promote millet growth in vivo. Frontiers in Microbiology, 11, 574550. https://doi.org/10.3389/fmicb.2020.574550 Singh, N. K., Raghubanshi, A. S., Upadhyay, A. K., & Rai, U. N. (2016). Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India. Ecotoxicology and Environmental Safety, 130, 224–233. https://doi.org/10.1016/j.ecoenv.2016.04.024 Singh, R., Misra, A. N., & Sharma, P. (2021). Safe, efficient, and economically beneficial remediation of arsenic-contaminated soil: Possible strategies for increasing arsenic tolerance and accumulation in non-edible economically important native plants. Environmental Science and Pollution Research, 28, 64113–64129. https://doi.org/10.1007/s11356-021-14507-z Song, Y., Yang, X., Yang, S., & Wang, J. (2019). Transcriptome sequencing and functional analysis of Sedum lineare Thunb. upon salt stress. Molecular Genetics and Genomics, 294, 1441–1453. https://doi.org/10.1007/s00438-019-01587-3 Souri, Z., Karimi, N., Farooq, M. A., & Sandalio, L. M. (2020). Nitric oxide improves tolerance to arsenic stress in Isatis cappadocica desv. Shoots by Enhancing Antioxidant Defenses. Chemosphere, 239, 124523. https://doi.org/10.1016/j.chemosphere.2019.124523 Srivastava, M., Ma, L. Q., Rathinasabapathi, B., & Srivastava, P. (2009). Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Bioresource Technology, 100, 1115–1121. https://doi.org/10.1016/j.biortech.2008.08.026 Strawn, D. G. (2018). Review of interactions between phosphorus and arsenic in soils from four case studies. Geochemical Transactions, 19(1), 10. https://doi.org/10.1186/s12932-018-0055-6 Su, S. M., Zeng, X. B., Bai, L. Y., Williams, P. N., Wang, Y. N., Zhang, L. L., & Wu, C. X. (2017). Inoculating chlamydospores of Trichoderma asperellum SM-12F1 changes arsenic availability and enzyme activity in soils and improves water spinach growth. Chemosphere, 175, 497–504. https://doi.org/10.1016/j.chemosphere.2017.02.048 Tanveer, Y., Yasmin, H., Nosheen, A., Ali, S., & Ahmad, A. (2022). Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil. Environmental Pollution, 300, 118889. https://doi.org/10.1016/j.envpol.2022.118889 Wang, H. J., Cui, S. P., Ma, L., Wang, Z. Z., & Wang, H. B. (2021). Variations of arsenic forms and the role of arsenate reductase in three hydrophytes exposed to different arsenic species. Ecotoxicology and Environmental Safety, 221, 112415. https://doi.org/10.1016/j.ecoenv.2021.112415 Wang, J., Moeen-Ud-Din, M., Yin, R., & Yang, S. (2022). ROS homeostasis involved in dose-dependent responses of Arabidopsis seedlings to copper toxicity. Genes, 14(1), 11. https://doi.org/10.3390/genes14010011 Wang, J., Xie, Z. M., Wei, X. F., Chen, M. N., Luo, Y., & Wang, Y. X. (2020). An indigenous bacterium Bacillus XZM for phosphate enhanced transformation and migration of arsenate. Science of the Total Environment, 719, 137183. https://doi.org/10.1016/j.scitotenv.2020.137183 Wang, J., Zhu, J. Y., Liu, S. P., Liu, B. Y., Gao, Y. N., & Wu, Z. B. (2011). Generation of reactive oxygen species in cyanobacteria and green algae induced by allelochemicals of submerged macrophytes. Chemosphere, 85, 977–982. https://doi.org/10.1016/j.chemosphere.2011.06.076 Wu, Z. Z., Su, J. F., Ali, A., Hu, X. F., & Wang, Z. (2021). Study on the simultaneous removal of fluoride, heavy metals and nitrate by calcium precipitating strain Acinetobacter sp. H12. Journal of Hazardous Materials, 405, 124255. https://doi.org/10.1016/j.jhazmat.2020.124255 Xiao, A. W., Li, Z., Li, W. C., & Ye, Z. H. (2020). The effect of plant growth-promoting rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (Oryza sativa L.). Chemosphere, 242, 125136. https://doi.org/10.1016/j.chemosphere.2019.125136 Yan, H. L., Gao, Y. W., Wu, L. L., Wang, L. Y., Zhang, T., Dai, C. H., Xu, W. X., Feng, L., Ma, M., Zhu, Y. G., & He, Z. Y. (2019). Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. Journal of Hazardous Materials, 368, 386–396. https://doi.org/10.1016/j.jhazmat.2019.01.072 Yang, C. Y., Ho, Y. N., Makita, R., Inoue, C., & Chien, M. F. (2020). Cupriavidus basilensis strain r507, a toxic arsenic phytoextraction facilitator, potentiates the arsenic accumulation by Pteris vittata. Ecotoxicology and Environmental Safety, 190, 110075. https://doi.org/10.1016/j.ecoenv.2019.110075 Yang, W. L., Luo, L. Q., Bostick, B. C., Wiita, E., Cheng, Y. F., & Shen, Y. T. (2021). Effect of combined arsenic and lead exposure on their uptake and translocation in Indian mustard. Environmental Pollution, 274, 116549. https://doi.org/10.1016/j.envpol.2021.116549 Yasin, N. A., Khan, W. U., Ahmad, S. R., Ahmad, A., Akram, W., & Ijaz, M. (2019). Role of Acinetobacter sp CS9 in improving growth and phytoremediation potential of Catharanthus longifolius under cadmium stress. Polish Journal of Environmental Studies, 28, 435–443. https://doi.org/10.15244/pjoes/80806 Yavari, S., Courchesne, F., & Brisson, J. (2021). Nutrient-assisted phytoremediation of wood preservative-contaminated technosols with co-planting of Salix interior and Festuca arundinacea. Environmental Science and Pollution Research, 28, 58018–58034. https://doi.org/10.1007/s11356-021-14076-1 Zeng, G., Wan, J., Huang, D., Hu, L., Huang, C., Cheng, M., Xue, W., Gong, X., Wang, R., & Jiang, D. (2017). Precipitation, adsorption and rhizosphere effect: The mechanisms for phosphate-induced Pb immobilization in soils—A review. Journal of Hazardous Materials, 339, 354–367. https://doi.org/10.1016/j.jhazmat.2017.05.038