Improved dynamic responses of room-temperature operable field-effect-transistor gas sensors enabled by programmable multi-spectral ultraviolet illumination

Elsevier BV - Tập 342 - Trang 130058 - 2021
Youngwoo Jang, Jingu Kang, Jeong‐Wan Jo, Yong−Hoon Kim, Jaekyun Kim, Sung Kyu Park

Tóm tắt

Từ khóa


Tài liệu tham khảo

Al-Hardan, 2010, ZnO thin films for VOC sensing applications, Vacuum, 85, 101, 10.1016/j.vacuum.2010.04.009

Chung, 2012, Highly sensitive NO2 gas sensor based on ozone treated graphene, Sens. Actuators, B Chem., 166–167, 172, 10.1016/j.snb.2012.02.036

Hjiri, 2014, Al-doped ZnO for highly sensitive CO gas sensors, Sens. Actuators, B Chem., 196, 413, 10.1016/j.snb.2014.01.068

Wang, 2012, ZnO nanorod gas sensor for ethanol detection, Sens. Actuators, B Chem., 162, 237, 10.1016/j.snb.2011.12.073

Yamazoe, 2003, Oxide semiconductor gas sensors, Catal. Surv. from Asia., 7, 63, 10.1023/A:1023436725457

Yang, 2012, Amorphous InGaZnO4 films: gas sensor response and stability, Sens. Actuators, B Chem., 171–172, 1166, 10.1016/j.snb.2012.06.057

Kim, 2012, Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films, Nature, 489, 128, 10.1038/nature11434

Kang, 2020, In-plane amorphous oxide ionotronic devices and circuits with photochemically enabled favorable interfaces, ACS Appl. Mater. Interfaces, 12, 44288, 10.1021/acsami.0c11548

Zan, 2011, Room-temperature-operated sensitive hybrid gas sensor based on amorphous indium gallium zinc oxide thin-film transistors, Appl. Phys. Lett., 98, 1, 10.1063/1.3601488

Jaisutti, 2016, Low-temperature photochemically activated amorphous indium-gallium-Zinc oxide for highly stable room-temperature gas sensors, ACS Appl. Mater. Interfaces, 8, 20192, 10.1021/acsami.6b05724

Sonker, 2015, Synthesis of ZnO nanopetals and its application as NO2 gas sensor, Mater. Lett., 152, 189, 10.1016/j.matlet.2015.03.112

Jaisutti, 2017, Ultrasensitive room-temperature operable gas sensors using p-Type Na: ZnO nanoflowers for diabetes detection, ACS Appl. Mater. Interfaces, 9, 8796, 10.1021/acsami.7b00673

Kang, 2019, Nano Pt-decorated transparent solution-processed oxide semiconductor sensor with ppm detection capability, RSC Adv., 9, 6193, 10.1039/C8RA09917K

Kim, 2018, Toward adequate operation of amorphous oxide thin-film transistors for low-concentration gas detection, ACS Appl. Mater. Interfaces, 10, 10185, 10.1021/acsami.7b18657

Chang, 2002, The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor, Sens. Actuators B Chem., 84, 258, 10.1016/S0925-4005(02)00034-5

Lee, 1999, Temperature modulation in semiconductor gas sensing, Sens. Actuators, B Chem., 60, 35, 10.1016/S0925-4005(99)00241-5

Sun, 2012, Metal oxide nanostructures and their gas sensing properties: a review, Sensors, 12, 2610, 10.3390/s120302610

Zhang, 2004, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices, Nano Lett., 4, 1919, 10.1021/nl0489283

Chen, 2015, Gas sensing properties of indium-gallium-zinc-oxide gas sensors in different light intensity, Anal. Chem. Res., 4, 8, 10.1016/j.ancr.2015.03.001

Knobelspies, 2018, Photo-induced room-temperature gas sensing with a-IGZO based thin-film transistors fabricated on flexible plastic foil, Sensors (Switzerland)., 18, 10.3390/s18020358

Xie, 2015, UV-assisted room-temperature chemiresistive NO2 sensor based on TiO2 thin film, J. Alloys. Compd., 653, 255, 10.1016/j.jallcom.2015.09.021

Gupta, 2015, Ozone oxidation methods for aluminum oxide formation: application to low-voltage organic transistors, Org. Electron., 21, 132, 10.1016/j.orgel.2015.03.007

Tohsophon, 2015, Environmental stability of high-mobility indium-oxide based transparent electrodes, APL Mater., 3, 10.1063/1.4935125

Chuang, 2008, P-13: Photosensitivity of Amorphous IGZO TFTs for Active-Matrix Flat-Panel Displays, SID Symp, Dig. Tech. Pap., 39, 1215, 10.1889/1.3069354

Hadjiivanov, 2002, Surface species formed after NO adsorption and NO + O2 coadsorption on ZrO2 and sulfated ZrO2: an FTIR spectroscopic study, Langmuir, 18, 1619, 10.1021/la0110895

Boarino, 2000, NO2 monitoring at room temperature by a porous silicon gas sensor, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 69, 210, 10.1016/S0921-5107(99)00267-6

Coronado, 1999, FTIR study of the interaction of NO2 and propene with Pt/BaCl2/SiO2, J. Mol. Catal. A Chem., 138, 83, 10.1016/S1381-1169(98)00153-8

Nova, 2004, NOx adsorption study over Pt–Ba/Alumina catalysts: FT-IR and reactivity study, Top. Catal., 30/31, 181, 10.1023/B:TOCA.0000029747.17327.2c

Tian, 2013, Influence of photolysis on multispectral photoacoustic measurement of nitrogen dioxide concentration, J. Air Waste Manag. Assoc., 63, 1091, 10.1080/10962247.2013.790323

Kang, 2007, Amorphous gallium indium zinc oxide thin film transistors: sensitive to oxygen molecules, Appl. Phys. Lett., 90, 10, 10.1063/1.2723543

Vorobyeva, 2017, Highly sensitive ZnO(Ga, in) for sub-ppm level NO2 detection: effect of indium content, Chemosensors, 5, 1, 10.3390/chemosensors5020018

Blondel, 2001, Electron affinities of 16O, 17O, 18O, the fine structure of 16O− and the hyperfine structure of 17O−, Phys. Rev. A - At. Mol. Opt. Phys., 64, 14, 10.1103/PhysRevA.64.052504

Ervin, 1988, Ultraviolet photoelectron spectrum of NO2−, J. Phys. Chem., 92, 5405, 10.1021/j100330a017

Jeong, 2019, Highly sensitive and selective room-temperature NO2 gas-sensing characteristics of SnOx-based p-type thin-film transistor, Sens. Actuators, B Chem., 288, 625, 10.1016/j.snb.2019.03.046

Chinh, 2016, NO gas sensing kinetics at room temperature under UV light irradiation of In2O3 nanostructures, Sci. Rep., 6, 1, 10.1038/srep35066

Song, 2012, Metal-oxide-semiconductor field effect transistor humidity sensor using surface conductance, Appl. Phys. Lett., 100, 1, 10.1063/1.3691936