Tăng cường độ chính xác trong chẩn đoán của kỹ thuật chụp cắt lớp phát xạ đơn photon thallium-201 bằng cách điều chỉnh suy giảm CT

Journal of Nuclear Cardiology - Tập 26 - Trang 1584-1595 - 2018
Jei-Yie Huang1,2, Ruoh-Fang Yen1, Wen-Chung Lee2, Chun-Kai Huang2,3, Pei-Ying Hsu4, Mei-Fang Cheng1, Ching-Chu Lu1,2, Yen-Hung Lin3, Kuo-Liong Chien2,3, Yen-Wen Wu1,3,5,6,7
1Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City, Taiwan
2Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan
3Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City, Taiwan
4Department of Nuclear Medicine, National Taiwan University Hospital, Yun-Lin Branch, Douliu City, Taiwan
5Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
6Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
7National Yang-Ming University School of Medicine, Taipei City, Taiwan

Tóm tắt

Lợi ích của việc điều chỉnh suy giảm (AC) trong hình ảnh tưới máu cơ tim với technetium-99m (MPI) đã được xác lập rõ ràng. Tuy nhiên, giá trị của điều chỉnh suy giảm thallium (Tl-201) và điều chỉnh suy giảm CT thường quy (CTAC) chưa được xác định rõ. Mục tiêu của nghiên cứu này là để đánh giá hiệu suất chẩn đoán của thallium (Tl-201) MPI với việc bổ sung CTAC và xác định những bệnh nhân nào sẽ được lợi ích nhiều nhất. Tổng cộng 108 bệnh nhân liên tiếp đã trải qua Tl-201 MPI và nhận được chụp động mạch vành trong vòng 3 tháng đã được đưa vào nghiên cứu. Hiệu suất chẩn đoán được xác định thông qua độ nhạy, độ đặc hiệu và phân tích đường cong đặc tính hoạt động của người nhận. Phân tích theo nhóm được thực hiện dựa trên giới tính và tình trạng béo phì. CTAC đã cải thiện diện tích dưới đường cong (0.84 so với 0.77, P = 0.037 ở cấp độ bệnh nhân), chủ yếu nhờ vào sự cải thiện đáng kể về độ đặc hiệu (0.78 so với 0.57, P = 0.013) và không có sự khác biệt đáng kể trong độ nhạy (0.79 so với 0.82, P = 0.75). Trong phân tích theo nhóm, CTAC có lợi nhất cho các đối tượng béo phì, nam giới, và đặc biệt là những tổn thương động mạch vành phải. CTAC đã cải thiện hiệu suất chẩn đoán một cách đáng kể chủ yếu bằng cách tăng cường độ đặc hiệu, và mức độ cải thiện lớn hơn đáng kể ở bệnh nhân béo phì và bệnh nhân nam. Những phát hiện này gợi ý rằng CTAC nên được áp dụng cho Tl-201 MPI như một thực hành lâm sàng thường quy.

Từ khóa

#Thallium-201 #ảnh chụp cắt lớp phát xạ đơn photon #điều chỉnh suy giảm #chẩn đoán #hiệu suất chẩn đoán #động mạch vành

Tài liệu tham khảo

Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. J Am Coll Cardiol. 2009;53:2201–29. Burrell S, MacDonald A. Artifacts and pitfalls in myocardial perfusion imaging. J Nucl Med Technol. 2006;34:193–211. Utsunomiya D, Tomiguchi S, Shiraishi S, Yamada K, Honda T, Kawanaka K, et al. Initial experience with X-ray CT based attenuation correction in myocardial perfusion SPECT imaging using a combined SPECT/CT system. Ann Nucl Med. 2005;19:485–9. Patton JA, Turkington TG. SPECT/CT physical principles and attenuation correction. J Nucl Med Technol. 2008;36:1–10. Caobelli F, Kaiser SR, Thackeray JT, Bengel FM, Chieregato M, Soffientini A, et al. IQ SPECT allows a significant reduction in administered dose and acquisition time for myocardial perfusion imaging: evidence from a phantom study. J Nucl Med. 2014;55:2064–70. Patchett ND, Pawar S, Miller EJ. Visual identification of coronary calcifications on attenuation correction CT improves diagnostic accuracy of SPECT/CT myocardial perfusion imaging. J Nucl Cardiol. 2017;24:711–20. Schaap J, Kauling RM, Boekholdt SM, Nieman K, Meijboom WB, Post MC, et al. Incremental diagnostic accuracy of hybrid SPECT/CT coronary angiography in a population with an intermediate to high pre-test likelihood of coronary artery disease. Eur Heart J Cardiovasc Imaging. 2013;14:642–9. Huang JY, Huang CK, Yen RF, Wu HY, Tu YK, Cheng MF, et al. Diagnostic performance of attenuation-corrected myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. J Nucl Med. 2016;57:1893–8. Sharma P, Patel CD, Karunanithi S, Maharjan S, Malhotra A. Comparative accuracy of CT attenuation-corrected and non-attenuation-corrected SPECT myocardial perfusion imaging. Clin Nucl Med. 2012;37:332–8. Genovesi D, Giorgetti A, Gimelli A, Kusch A, D’Aragona Tagliavia I, Casagranda M, et al. Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: results of the multicentre SPAG (SPECT Attenuation Correction vs Gated) study. Eur J Nucl Med Mol Imaging. 2011;38:1890–8. Huang R, Li F, Zhao Z, Liu B, Ou X, Tian R, et al. Hybrid SPECT/CT for attenuation correction of stress myocardial perfusion imaging. Clin Nucl Med. 2011;36:344–9. Masood Y, Liu YH, Depuey G, Taillefer R, Araujo LI, Allen S, et al. Clinical validation of SPECT attenuation correction using x-ray computed tomography-derived attenuation maps: multicenter clinical trial with angiographic correlation. J Nucl Cardiol. 2005;12:676–86. Gallowitsch HJ, Sykora J, Mikosch P, Kresnik E, Unterweger O, Molnar M, et al. Attenuation-corrected thallium-201 single-photon emission tomography using a gadolinium-153 moving line source: clinical value and the impact of attenuation correction on the extent and severity of perfusion abnormalities. Eur J Nucl Med. 1998;25:220–8. Hung MC, Chang PW, Hsieh WA, Hwang JJ. Myocardial perfusion scintigraphy in Taiwan from 2005 to 2009. Nucl Med Commun. 2012;33:733–8. Shibutani T, Onoguchi M, Yoneyama H, Konishi T, Matsuo S, Nakajima K, et al. Characteristics of single- and dual-photopeak energy window acquisitions with thallium-201 IQ-SPECT/CT system. Ann Nucl Med. 2017;31:529–35. Xiao J, de Wit TC, Zbijewski W, Staelens SG, Beekman FJ. Evaluation of 3D Monte Carlo-based scatter correction for 201Tl cardiac perfusion SPECT. J Nucl Med. 2007;48:637–44. Harel F, Genin R, Daou D, Lebtahi R, Delahaye N, Helal BO, et al. Clinical impact of combination of scatter, attenuation correction, and depth-dependent resolution recovery for (201)Tl studies. J Nucl Med. 2001;42:1451–6. Wu YT, Chien CL, Wang SY, Yang WS, Wu YW. Gender differences in myocardial perfusion defect in asymptomatic postmenopausal women and men with and without diabetes mellitus. J Womens Health. 2013;22:439–44. Wang SY, Cheng MF, Hwang JJ, Hung CS, Wu YW. Sex-specific normal limits of left ventricular ejection fraction and volumes estimated by gated myocardial perfusion imaging in adult patients in Taiwan: a comparison between two quantitative methods. Nucl Med Commun. 2011;32:113–20. Thompson R, Heller G, Johnson L, Case J, Cullom S, Garcia E, et al. Value of attenuation correction on ECG-gated SPECT myocardial perfusion imaging related to body mass index. J Nucl Cardiol. 2005;12:195–202. Yamauchi Y, Kanzaki Y, Otsuka K, Hayashi M, Okada M, Nogi S, et al. Novel attenuation correction of SPECT images using scatter photopeak window data for the detection of coronary artery disease. J Nucl Cardiol. 2014;21:109–17. Banzo I, Pena FJ, Allende RH, Quirce R, Carril JM. Prospective clinical comparison of non-corrected and attenuation- and scatter-corrected myocardial perfusion SPECT in patients with suspicion of coronary artery disease. Nucl Med Commun. 2003;24:995–1002. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging–executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol. 2003;42:1318–33. Chien CL, Wu YW, Yang WS, Yang PC, Su HM, Wu YT. Myocardial perfusion image in asymptomatic postmenopausal women with physical inactivity and overweight. Obesity Facts. 2011;4:372–8. Apostolopoulos DJ, Gąsowska M, Savvopoulos CA, Skouras T, Spyridonidis T, Andrejczuk A, et al. The impact of transmission-emission misregistration on the interpretation of SPET/CT myocardial perfusion studies and the value of misregistration correction. Hell J Nucl Med. 2015;18:114–21. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging. 1991;10:408–12. Segmentation AHAWGoM, Imaging: RfC, Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Circulation. 2002;105:539–42. Brodov Y, Frenkel A, Chouraqui P, Przewloka K, Rispler S, Abadi S, et al. Influence of attenuation correction on transient left ventricular dilation in dual isotope myocardial perfusion imaging in patients with known or suspected coronary artery disease. Am J Cardiol. 2012;110:57–61. Hart PD. Receiver operating characteristic (ROC) curve analysis: a tutorial using body mass index (BMI) as a measure of obesity. J Phys Act Res. 2016;1:5–8. Ortiz-Perez JT, Meyers SN, Lee DC, Kansal P, Klocke FJ, Holly TA, et al. Angiographic estimates of myocardium at risk during acute myocardial infarction: validation study using cardiac magnetic resonance imaging. Eur Heart J. 2007;28:1750–8. Donato P, Coelho P, Santos C, Bernardes A, Caseiro-Alves F. Correspondence between left ventricular 17 myocardial segments and coronary anatomy obtained by multi-detector computed tomography: an ex vivo contribution. Surg Radiol Anat. 2012;34:805–10. Kosinski AS. A weighted generalized score statistic for comparison of predictive values of diagnostic tests. Stat Med. 2013;32:964–77. Hwang LC, Bai CH, Chen CJ. Prevalence of obesity and metabolic syndrome in Taiwan. J Formos Med Assoc. 2006;105:626–35. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Stress myocardial perfusion single-photon emission computed tomography is clinically effective and cost effective in risk stratification of patients with a high likelihood of coronary artery disease (CAD) but no known CAD. J Am Coll Cardiol. 2004;43:200–8. Johansen A, Grupe P, Veje A, Braad PE, Hoilund-Carlsen PF. Scatter and attenuation correction changes interpretation of gated myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2004;31:1152–9. Benkiran M, Mariano-Goulart D, Bourdon A, Sibille L, Bouallegue FB. Is computed tomography attenuation correction more efficient than gated single photon emission computed tomography analysis in improving the diagnostic performance of myocardial perfusion imaging in patients with low prevalence of ischemic heart disease? Nucl Med Commun. 2015;36:69–77. Links JM, DePuey EG, Taillefer R, Becker LC. Attenuation correction and gating synergistically improve the diagnostic accuracy of myocardial perfusion SPECT. J Nucl Cardiol. 2002;9:183–7. Liu CJ, Cheng JS, Chen YC, Huang YH, Yen RF. A performance comparison of novel cadmium-zinc-telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation. Ann Nucl Med. 2015;29:342–50. Kennedy JA, Brodov Y, Weinstein AL, Israel O, Frenkel A. The effect of CT-based attenuation correction on the automatic perfusion score of myocardial perfusion imaging using a dedicated cardiac solid-state CZT SPECT/CT. J Nucl Cardiol. 2017. https://doi.org/10.1007/s12350-017-0905-0. Caobelli F, Akin M, Thackeray JT, Brunkhorst T, Widder J, Berding G, et al. Diagnostic accuracy of cadmium-zinc-telluride-based myocardial perfusion SPECT: impact of attenuation correction using a co-registered external computed tomography. Eur Heart J Cardiovasc Imaging. 2016;17:1036–43. van Dijk JD, Mouden M, Ottervanger JP, van Dalen JA, Knollema S, Slump CH, et al. Value of attenuation correction in stress-only myocardial perfusion imaging using CZT-SPECT. J Nucl Cardiol. 2017;24:395–401. Sciagra R. The expanding role of left ventricular functional assessment using gated myocardial perfusion SPECT: the supporting actor is stealing the scene. Eur J Nucl Med Mol Imaging. 2007;34:1107–22. Linden A. Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract. 2006;12:132–9. Hendel RC, Berman DS, Cullom SJ, Follansbee W, Heller GV, Kiat H, et al. Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging. Circulation. 1999;99:2742–9. Shotwell M, Singh BM, Fortman C, Bauman BD, Lukes J, Gerson MC. Improved coronary disease detection with quantitative attenuation-corrected Tl-201 images. J Nucl Cardiol. 2002;9:52–62. Wu YW, Chen YH, Wang SS, Jui HY, Yen RF, Tzen KY, et al. PET assessment of myocardial perfusion reserve inversely correlates with intravascular ultrasound findings in angiographically normal cardiac transplant recipients. J Nucl Med. 2010;51:906–12. Liu CJ, Wu YW, Ko KY, Chen YC, Cheng MF, Yen RF, et al. Incremental diagnostic performance of combined parameters in the detection of severe coronary artery disease using exercise gated myocardial perfusion imaging. PLoS ONE. 2015;10:e0134485.