Improved composite relation for pythagorean fuzzy sets and its application to medical diagnosis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Atanassov KT (1983) Intuitionistic fuzzy sets. VII ITKR’s Session, Sofia
Atanassov KT (1989) Geometrical interpretation of the elements of the intuitionistic fuzzy objects. Preprint IM-MFAIS-1-89, Sofia
Beliakov G, James S (2014) Averaging aggregation functions for preferences expressed as Pythagorean membership grades and fuzzy orthopairs. In: Proc IEEE Int Conf Fuzzy Syst (FUZZ-IEEE), pp 298–305
Chen SM, Chang CH (2015) A novel similarity measure between atanassov’s intuitionistic fuzzy sets based on transformation techniques with applications to pattern recognition. Inform Sci 291:96–114
Chen SM, Chang YC (2011) Weighted fuzzy rule interpolation based on ga-based weight-learning techniques. IEEE Trans Fuzzy Syst 19(4):729–744
Chen SM, Cheng SH, Chiou CH (2016) Fuzzy multiattribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology. Inform Fusion 27:215–227
Chen SM, Lee SH, Lee CH (2001) A new method for generating fuzzy rules from numerical data for handling classification problems. Appl Artif Intell 15(7):645–664
Chen SM, Munif A, Chen GS, Liu HC, Kuo BC (2012) Fuzzy risk analysis based on ranking generalized fuzzy numbers with different left heights and right heights. Expert Syst Appl 39(7):6320–6334
Chen SM, Tanuwijaya K (2011) Fuzzy forecasting based on high-order fuzzy logical relationships and automatic clustering techniques. Expert Syst Appl 38(12):15425–1543
Davvaz B, Sadrabadi EH (2016) An application of intuitionistic fuzzy sets in medicine. Int J Biomath 9(3):1650037–1-15
De SK, Biswas R, Roy AR (2001) An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Set Syst 117(2):209–213
Dick S, Yager RR, Yazdanbakhsh O (2016) On pythagorean and complex fuzzy set operations. IEEE Trans Fuzzy Syst 24(5):1009–1021
Du Y, Hou F, Zafar W, Yu Q, Zhai Y (2017) A novel method for multiattribute decision making with interval-valued pythagorean fuzzy linguistic information. Int J Intell Syst 32(10):1085–1112
Ejegwa PA (2015) Intuitionistic fuzzy sets approach in appointment of positions in an organization via max–min–max rule. Global J Sci Front Res F Math Decis Sci 15(6):1–6
Ejegwa PA (2018) Distance and similarity measures for pythagorean fuzzy sets. Granul Comput. https://doi.org/10.1007/s41066-018-00149-z
Ejegwa PA, Akubo AJ, Joshua OM (2014a) Intuitionistic fuzzzy sets in career determination. J Inf Comput Sci 9(4):285–288
Ejegwa PA, Modom ES (2015) Diagnosis of viral hepatitis using new distance measure of intuitionistic fuzzy sets. Int J Fuzzy Math Arch 8(1):1–7
Ejegwa PA, Onoja AM, Chukwukelu SN (2014b) Application of intuitionistic fuzzy sets in research questionnaire. J Global Res Math Arch 2(5):51–54
Ejegwa PA, Onoja AM, Emmanuel IT (2014c) A note on some models of intuitionistic fuzzy sets in real life situations. J Global Res Math Arch 2(5):42–50
Ejegwa PA, Tyoakaa GU, Ayenge AM (2016) Application of intuitionistic fuzzy sets in electoral system. Int J Fuzzy Math Arch 10(1):35–41
Gao H, Wei GW (2018) Multiple attribute decision making based on interval-valued pythagorean fuzzy uncertain linguistic aggregation operators. Int J Knowl Based Intell Eng Syst 22:59–81
Garg H (2016) A novel correlation coefficients between pythagorean fuzzy sets and its applications to decision making processes. Int J Intell Syst 31(12):1234–1252
Garg H (2017) Generalized pythagorean fuzzy geometric aggregation operators using einstein t-norm and t-conorm fo multicriteria decision making process. Int J Intell Syst 32(6):597–630
Garg H (2018a) Generalized pythagorean fuzzy geometric interactive aggregation operators using einstein operations and their application to decision making. J Exp Theor Artif Intell 30(6):763–794
Garg H (2018b) A linear programming method based on an improved score function for interval-valued pythagorean fuzzy numbers and its application to decision-making. Int J Uncert Fuzz Knowl Based Syst 29(1):67–80
Garg H (2018c) Linguistic pythagorean fuzzy sets and its applications in multiattribute decision making process. Int J Intell Syst 33(6):1234–1263
Garg H (2018d) A new exponential operational laws and their aggregation operators of interval-valued pythagorean fuzzy information. Int J Intell Syst 33(3):653–683
Garg H (2018e) Some methods for strategic decision-making problems with immediate probabilities in pythagorean fuzzy environment. Int J Intell Syst 33(4):687–712
Gou XJ, Xu ZS, Ren PJ (2016) The properties of continuous pyhagorean fuzzy information. Int J Intell Syst 31(5):401–424
Hadi-Venchen A, Mirjaberi M (2014) Fuzzy inferior ratio method for multiple attribue decision making problems. Inf Sci 277:263–272
Hatzimichailidis AG, Papakostas AG, Kaburlasos VG (2012) A novel distance measure of intuitionistic fuzzy sets and its application to pattern recognition problems. Int J Intell Syst 27:396–409
He X, Du Y, Liu W (2016) Pythagorean fuzzy power average operators. Fuzzy Syst Math 30(6):116–124
Khan MSA, Abdullah S, Ali A, Amin F (2018a) An extension of vikor method for multiattribute decision making under pythagorean hesitant fuzzy setting. Granul Comput. https://doi.org/10.1007/s41066-018-0102-9
Khan MSA, Abdullah S, Ali A, Amin F (2018b) Pythagorean fuzzy prioritized aggregation operators and their application to multiattribute group decision making. Granul Comput. https://doi.org/10.1007/s41066-018-0093-6
Liang D, Xu Z (2017) The new extension of topsis method for multiple criteria decision making with hesitant pythagorean fuzzy sets. Appl Soft Comput 60:167–179
Liu P, Chen SM (2017) Group decision making based on heronian aggregation operators of intuitionistic fuzzy numbers. IEEE Trans Cybern 47(9):2514–2530
Mohagheghi V, Mousavi SM, Vahdani B (2017) Enhancing decision-making flexibility by introducing a new last aggregation evaluating approach based on multi-criteria group decision making and pythagorean fuzzy sets. Appl Soft Comput 61:527–535
Peng X, Selvachandran G (2017) Pythagorean fuzzy set: state of the art and future directions. Artif Intell Rev. https://doi.org/10.1007/s10462-017-9596-9
Perez-Dominguez L, Rodriguez-Picon LA, Alvarado-Iniesta A, Cruz DL, Xu Z (2018) Moora under pythagorean fuzzy sets for multiple criteria decision making. Complex. https://doi.org/10.1155/2018/2602376
Rahman K, Abdullah S (2018) Generalized interval-valued pythagorean fuzzy aggregation operators and their application to group decision making. Granul Comput. https://doi.org/10.1007/s41066-018-0082-9
Rahman K, Abdullah S, Ali A (2018a) Some induced aggregation operators based on interval-valued pythagorean fuzzy numbers. Granul Comput. https://doi.org/10.1007/s41066-018-0091-8
Rahman K, Abdullah S, Shakeel M, Khan MSA, Ullah M (2017) Interval-valued pythagorean fuzzy geometric aggregation operators and their application to group decision making problem. Cogent Math. https://doi.org/10.1080/23311835.2017.1338638
Rahman K, Ali A, Abdullah S, Amin F (2018b) Approaches to multi-attribute group decision making based on induced interval-valued pythagorean fuzzy einstein aggregation operator. New Math Natural Comput 14(3):343–361
Szmidt E, Kacprzyk J (2001) Intuitionistic fuzzy sets in some medical applications. Note IFS 7(4):58–64
Szmidt E, Kacprzyk J (2004) Medical diagnostic reasoning using a similarity measure for intuitionistic fuzzy sets. Note IFS 10(4):61–69
Wang HY, Chen SM (2008) Evaluating students’ answerscripts using fuzzy numbers associated with degrees of confidence. IEEE Trans Fuzzy Syst 16(2):403–415
Yager RR (2013a) Pythagorean fuzzy subsets. In: Proceedings of the Joint IFSAWorld Congress NAFIPS Annual Meeting, pp 57–61
Yager RR (2013b) DPythagorean membership grades in multicriteria decision making. Technical Report MII-3301 Machine Intelligence Institute, Iona College, New Rochelle, NY
Yager RR (2014) Pythagorean membership grades in multicriteria decision making. IEEE Trans Fuzzy Syst 22(4):958–965
Yager RR (2016) Properties and applications of Pythagoean fuzzy sets. Springer, Berlin
Yager RR, Abbasov AM (2013) Pythagorean membership grades, complex numbers and decision making. Int J Intell Syst 28(5):436–452