Cải thiện hiệu lực kháng khuẩn và kháng sinh tự nhiên của các nanoceramic BaTi2Fe4O11−(x)NiFe2O4 có khả năng thích ứng: nghiên cứu phân tích vi cấu trúc và quang phổ

Springer Science and Business Media LLC - Tập 5 - Trang 1-19 - 2023
Ali B. Abou Hammad1, Bahaa A. Hemdan2, A. M. Mansour1, Amany M. El Nahrawy1
1Solid State Physics Department, Physics Research Division, National Research Centre, Dokki, Egypt
2Water Pollution Research Department, Environmental Research and Climate Change Institute, National Research Centre, Dokki, Egypt

Tóm tắt

Trong quá trình tìm kiếm ứng dụng đa chức năng, các nhà nghiên cứu phải đối mặt với thách thức quan trọng trong việc tạo ra một vật liệu nano perovskite-ferrite hiệu quả và khả thi về mặt kinh tế. Để giải quyết thách thức này, các nanoceramic đa chức năng (1−x)BaTi2Fe4O11−(x)NiFe2O4 (BTF−xNFO), với (x = 0.1–0.7), đã được tổng hợp thành công bằng phương pháp sol-gel ở nhiệt độ 550 °C. XRD và FTIR được sử dụng để xác định cấu trúc tinh thể và cấu trúc hóa học của các nanocomposite đa chức năng. Phân tích XRD xác nhận sự xuất hiện của cấu trúc đa pha, trong đó titanat barium sắt có cấu trúc tinh thể hình lục giác và ferrite nickel có cấu trúc tinh thể hình lập phương. Hơn nữa, tính thấm điện tương đối thể hiện các xu hướng phụ thuộc vào tần số, với sự suy giảm rõ rệt khi tần số tăng lên. Các kết quả đạt được nổi bật khả năng kháng khuẩn và kháng biofilm đáng kể của BTF-7NF đối với tất cả các vi sinh vật được thử nghiệm. Nghiên cứu đã đánh giá nồng độ ức chế tối thiểu và nồng độ diệt khuẩn của một loại nanocomposite cụ thể. Về tính chất kháng biofilm, một nồng độ 200 µg/ml của nanocomposite này (BTF-7NF) đã hiệu quả trong việc tiêu diệt sự hình thành biofilm. Những phát hiện này mạnh mẽ gợi ý BTF-7NF như một tác nhân kháng khuẩn tiềm năng, có khả năng ngăn chặn sự hình thành biofilm vi khuẩn có hại ở nồng độ cực kỳ thấp.

Từ khóa

#perovskite-ferrite #nanomaterial #antimicrobial #antibiofilm #sol-gel #XRD #FTIR #dielectric permittivity

Tài liệu tham khảo

Su Y, Hu T, Tang L et al (2014) The effect of dual complexing agents of lactic and citric acids on the formation of sol-gel derived Ag–PbTiO3 percolative thin film. Thin Solid Films 558:118–124. https://doi.org/10.1016/j.tsf.2014.02.081 El Nahrawy AM, Hemdan BA, Abou Hammad AB (2021) Morphological, impedance and terahertz properties of zinc titanate/Fe nanocrystalline for suppression of Pseudomonas aeruginosa biofilm. Nano-Structures & Nano-Objects 26:100715. https://doi.org/10.1016/j.nanoso.2021.100715 El Nahrawy AM, Abou Hammad AB, Mansour AM (2021) Structural investigation and optical properties of Fe, Al, Si, and Cu–ZnTiO3 nanocrystals. Phys Scr 96:115801. https://doi.org/10.1088/1402-4896/ac119e Kundu TK, Jana A, Barik P (2008) Doped barium titanate nanoparticles. Bull Mater Sci 31:501–505. https://doi.org/10.1007/S12034-008-0078-1/METRICS Rached A, Wederni MAA, Belkahla A et al (2020) Effect of doping in the physico-chemical properties of BaTiO3 ceramics. Phys B Condens Matter 596:412343. https://doi.org/10.1016/j.physb.2020.412343 Shen ZG, Chen JF, Yun J (2004) Preparation and characterizations of uniform nanosized BaTiO3 crystallites by the high-gravity reactive precipitation method. J Cryst Growth 267:325–335. https://doi.org/10.1016/j.jcrysgro.2004.03.018 Buscaglia MT, Buscaglia V, Viviani M et al (2000) Influence of foreign ions on the crystal structure of BaTiO3. J Eur Ceram Soc 20:1997–2007. https://doi.org/10.1016/S0955-2219(00)00076-5 Fukai K, Hidaka K, Aoki M, Abe K (1990) Preparation and properties of uniform fine perovskite powders by hydrothermal synthesis. Ceram Int 16:285–290. https://doi.org/10.1016/0272-8842(90)90041-D Góra A, Tian L, Ramakrishna S, Mukherjee S (2020) Design of novel perovskite-based polymeric Poly(l-Lactide-Co-Glycolide) nanofibers with anti-microbial properties for tissue engineering. Nanomaterials. https://doi.org/10.3390/nano10061127 Bober P, Liu J, Mikkonen KS et al (2014) Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties. Biomacromolecules 15:3655–3663. https://doi.org/10.1021/bm500939x Abou Hammad AB, El Nahwary AM, Hemdan BA, Abia ALK (2020) Nanoceramics and novel functionalized silicate-based magnetic nanocomposites as substitutional disinfectants for water and wastewater purification. Environ Sci Pollut Res 27:26668–26680. https://doi.org/10.1007/s11356-020-09073-9 Khatoon Z, McTiernan CD, Suuronen EJ et al (2018) Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4:e01067 Abdel-Khalek EK, Rayan DA, Askar AA et al (2021) Synthesis and characterization of SrFeO3-δ nanoparticles as antimicrobial agent. J Solgel Sci Technol 97:27–38. https://doi.org/10.1007/s10971-020-05431-8 Mohseni S, Aghayan M, Ghorani-Azam A et al (2014) Evaluation of antibacterial properties of barium zirconate titanate (BZT) nanoparticle. Braz J Microbiol 45:1393–1399. https://doi.org/10.1590/s1517-83822014000400033 Abou Hammad AB, Darwish AG, El Nahrawy AM (2020) Identification of dielectric and magnetic properties of core shell ZnTiO3/CoFe2O4 nanocomposites. Appl Phys A 126:504. https://doi.org/10.1007/s00339-020-03679-z Abou Hammad AB, Elzwawy A, Mansour AM et al (2020) Detection of 3,4-diaminotoluene based on Sr0.3Pb0.7TiO3/CoFe2O4 core/shell nanocomposite via an electrochemical approach. New J Chem 44:7941–7953. https://doi.org/10.1039/D0NJ01074J El Nahrawy AM, Ali AI, Mansour AM et al (2022) Talented Bi0.5Na0.25K0.25TiO3/oxidized cellulose films for optoelectronic and bioburden of pathogenic microbes. Carbohydr Polym 291:119656. https://doi.org/10.1016/j.carbpol.2022.119656 Duong NX, Bae JS, Jeon J et al (2019) Polymorphic phase transition in BaTiO3 by Ni doping. Ceram Int 45:16305–16310. https://doi.org/10.1016/j.ceramint.2019.05.156 Panigrahi MR, Panigrahi S (2010) Diffuse phase transition and dielectric study in Ba0.95Ca0.05TiO3 ceramic. Phys B Condens Matter 405:2556–2559. https://doi.org/10.1016/J.PHYSB.2010.03.031 Nemrava S, Vinnik DA, Hu Z et al (2017) Three Oxidation states of manganese in the barium hexaferrite BaFe12–xMnxO19. Inorg Chem 56:3861–3866. https://doi.org/10.1021/acs.inorgchem.6b02688 Prasatkhetragarn A, Muangkonkad P, Aommongkol P et al (2013) Investigation on ferromagnetic and ferroelectric properties of (La, K)-doped BiFeO3–BaTiO3 solid solution. Ceram Int 39:S249–S252. https://doi.org/10.1016/J.CERAMINT.2012.10.071 Selvarajan S, Malathy P, Suganthi A, Rajarajan M (2017) Fabrication of mesoporous BaTiO3/SnO2 nanorods with highly enhanced photocatalytic degradation of organic pollutants. J Ind Eng Chem 53:201–212. https://doi.org/10.1016/J.JIEC.2017.04.026 Abou Hammad AB, Hemdan BA, El Nahrawy AM (2020) Facile synthesis and potential application of Ni0.6Zn0.4Fe2O4 and Ni0.6Zn0.2Ce0.2Fe2O4 magnetic nanocubes as a new strategy in sewage treatment. J Environ Manage 270:110816. https://doi.org/10.1016/j.jenvman.2020.110816 Binsalah M, Devanesan S, Alsalhi MS et al (2022) Biomimetic synthesis of silver nanoparticles using ethyl acetate extract of Urtica diocia leaves; characterizations and emerging antimicrobial activity. Microorganisms. https://doi.org/10.3390/microorganisms10040789 El Nahrawy AM, Hemdan BA, Mansour AM et al (2021) Structural and opto-magnetic properties of nickel magnesium copper zircon silicate nano-composite for suppress the spread of foodborne pathogenic bacteria. Silicon. https://doi.org/10.1007/s12633-021-01295-x Mansour AM, Hemdan BA, Elzwawy A et al (2022) Ecofriendly synthesis and characterization of Ni2+ codoped silica magnesium zirconium copper nanoceramics for wastewater treatment applications. Sci Rep 12:9855. https://doi.org/10.1038/s41598-022-13785-y Stoitsova SR (2016) In: Paunova‐Krasteva TS (ed) Modulation of Biofilm Growth by Sub-inhibitory amounts of Antibacterial substances. IntechOpen, Rijeka. Ch. 19 Paunova-Krasteva T, Hemdan BA, Dimitrova PD et al (2022) Hybrid chitosan/CaO-based nanocomposites doped with plant extracts from Azadirachta indica and Melia azedarach: evaluation of antibacterial and antibiofilm activities. BioNanoSci. https://doi.org/10.1007/s12668-022-01047-0 El Nahrawy AM, Bakr AM, Hemdan BA, Abou Hammad AB (2020) Identification of Fe3 + co-doped zinc titanate mesostructures using dielectric and antimicrobial activities. Int J Environ Sci Technol 17:4481–4494. https://doi.org/10.1007/s13762-020-02786-x Mayeen A, Jayalakshmy MSK et al (2018) Dopamine functionalization of BaTiO3: an effective strategy for the enhancement of electrical, magnetoelectric and thermal properties of BaTiO3-PVDF-TrFE nanocomposites. Dalton Trans 47:2039–2051. https://doi.org/10.1039/c7dt03389c Singh M, Yadav BC, Ranjan A et al (2017) Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. Sens Actuators B Chem 241:1170–1178. https://doi.org/10.1016/J.SNB.2016.10.018 Gioti S, Sanida A, Mathioudakis GN et al (2022) Multitasking performance of Fe3O4/BaTiO3/epoxy resin hybrid nanocomposites. Materials 15:1784. https://doi.org/10.3390/ma15051784 Karthik K, Dhanuskodi S, Gobinath C et al (2017) Dielectric and antibacterial studies of microwave assisted calcium hydroxide nanoparticles. J Mater Sci: Mater Electron 28:16509–16518. https://doi.org/10.1007/S10854-017-7563-5/METRICS Chinnaiah K, Kannan K, Krishnamoorthy R, Gurushankar K (2023) Datura metel L. leaf extract mediated sodium alginate polymer membrane for supercapacitor and food packaging applications. Int J Biol Macromol 242:125112. https://doi.org/10.1016/J.IJBIOMAC.2023.125112 Lakshmanan A, Surendran P, Sakthy Priya S et al (2020) Investigations on structural, optical, dielectric, electronic polarizability, Z-scan and antibacterial properties of Ni/Zn/Fe2O4 nanoparticles fabricated by microwave-assisted combustion method. J Photochem Photobiol A Chem 402:112794. https://doi.org/10.1016/J.JPHOTOCHEM.2020.112794 Dacrory S, Abou Hammad AB, El Nahrawy AM et al (2021) Cyanoethyl Cellulose/BaTiO3/GO flexible films with Electroconductive Properties. ECS J Solid State Sci Technol 10:083004. https://doi.org/10.1149/2162-8777/AC1C56 Abou Hammad AB, Mansour AM, El Nahrawy AM (2021) Ni2+ doping effect on potassium barium titanate nanoparticles: enhancement optical and dielectric properties. Phys Scr 96:125821. https://doi.org/10.1088/1402-4896/ac25a6 Abou Hammad AB, Abd El-Aziz ME, Hasanin MS, Kamel S (2019) A novel electromagnetic biodegradable nanocomposite based on cellulose, polyaniline, and cobalt ferrite nanoparticles. Carbohydr Polym 216:54–62. https://doi.org/10.1016/j.carbpol.2019.03.038 El Nahrawy AM, Hemdan BA, Abou Hammad AB et al (2021) Modern template design and biological evaluation of cephradine-loaded magnesium calcium silicate nanocomposites as an inhibitor for nosocomial bacteria in biomedical applications. Silicon 13:2979–2991. https://doi.org/10.1007/s12633-020-00642-8 Okeke IN, Edelman R (2001) Dissemination of antibiotic-resistant bacteria across geographic borders. Clin Infect Dis 33:364–369. https://doi.org/10.1086/321877 Jain N, Jansone I, Obidenova T et al (2021) Antimicrobial resistance in nosocomial isolates of gram-negative bacteria: public health implications in the Latvian context. Antibiotics. https://doi.org/10.3390/antibiotics10070791 Webb GF, D’Agata EMC, Magal P, Ruan S (2005) A model of antibiotic-resistant bacterial epidemics in hospitals. Proc Natl Acad Sci U S A 102:13343–13348. https://doi.org/10.1073/pnas.0504053102 El Malah T, Soliman HA, Hemdan BA et al (2021) Synthesis and antibiofilm activity of 1,2,3-triazole-pyridine hybrids against methicillin-resistant: Staphylococcus aureus (MRSA). New J Chem 45:10822–10830. https://doi.org/10.1039/d1nj00773d El Nahrawy AM, Elzwawy A, Alam MM et al (2021) Synthesis, structural analysis, electrochemical and antimicrobial activities of copper magnesium zirconosilicate (Cu20Mg10Si40Zr(30-x)O:(x = 0,5,7,10) Ni2+) Nanocrystals. https://doi.org/10.1016/j.microc.2020.105881 Kannan K, Radhika D, Nesaraj AS et al (2020) Facile synthesis of NiO-CYSO nanocomposite for photocatalytic and antibacterial applications. Inorg Chem Commun 122:108307. https://doi.org/10.1016/J.INOCHE.2020.108307 Moghimi R, Aliahmadi A, McClements DJ, Rafati H (2016) Investigations of the effectiveness of nanoemulsions from sage oil as antibacterial agents on some food borne pathogens. LWT - Food Science and Technology 71:69–76. https://doi.org/10.1016/j.lwt.2016.03.018 Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588. https://doi.org/10.1021/es703238h El Nahrawy AM, Hemdan BA, Abou Hammad AB (2021) Morphological, impedance and terahertz properties of zinc titanate/Fe3+ nanocrystalline for suppression of Pseudomonas aeruginosa biofilm. Nano-Struct Nano-Objects 26:100715. https://doi.org/10.1016/j.nanoso.2021.100715 Chinnaiah K, Krishnamoorthi R, Kannan K et al (2022) Ag nanoparticles synthesized by Datura metel L. Leaf extract and their charge density distribution, electrochemical and biological performance. Chem Phys Lett 807:140083. https://doi.org/10.1016/J.CPLETT.2022.140083 Surendran P, Lakshmanan A, Priya SS et al (2021) Fluorescent carbon quantum dots from Ananas comosus waste peels: a promising material for NLO behaviour, antibacterial, and antioxidant activities. Inorg Chem Commun 124:108397. https://doi.org/10.1016/J.INOCHE.2020.108397 Rangayasami A, Kannan K, Joshi S, Subban M (2020) Bioengineered silver nanoparticles using Elytraria Acaulis (L.f.) Lindau leaf extract and its biological applications. Biocatal Agric Biotechnol 27:101690. https://doi.org/10.1016/J.BCAB.2020.101690 Bazargani MM, Rohloff J (2016) Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 61:156–164. https://doi.org/10.1016/j.foodcont.2015.09.036 Hemdan BA, Azab El-Liethy M, El-Taweel GE (2020) The destruction of Escherichia coli adhered to pipe surfaces in a model drinking water distribution system via various antibiofilm agents. Water Environ Res. https://doi.org/10.1002/wer.1388 Hemdan BA, El-Liethy MA, ElMahdy MEI, EL-Taweel GE (2019) Metagenomics analysis of bacterial structure communities within natural biofilm. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02271 El-Naggar ME, Abdelgawad AM, Abdel-Sattar R et al (2023) Potential antimicrobial and antibiofilm efficacy of essential oil nanoemulsion loaded polycaprolactone nanofibrous dermal patches. Eur Polym J 184:111782. https://doi.org/10.1016/j.eurpolymj.2022.111782 Ansari MA, Kalam A, Al-Sehemi AG et al (2021) Counteraction of biofilm formation and antimicrobial potential of terminalia catappa functionalized silver nanoparticles against candida albicans and multidrug-resistant gram-negative and gram-positive bacteria. Antibiotics. https://doi.org/10.3390/antibiotics10060725 Hemdan BA, El-Liethy MA, Shaban AM, El-Taweel GE-S (2017) Quantification of the metabolic activities of natural biofilm of different microenvironments. J Environ Sci Technol. https://doi.org/10.3923/jest.2017.131.138 Hemdan BA, El-Taweel GE, Goswami P et al (2021) The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: an overview of surveillance, outbreaks, and prevention. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-021-03008-3 Gurunathan S, Han JW, Kwon D-N, Kim J-H (2014) Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against gram-negative and gram-positive bacteria. Nanoscale Res Lett 9:373. https://doi.org/10.1186/1556-276X-9-373