Improved Wastewater Treatment by Combined System of Microbial Fuel Cell with Activated Carbon/TiO2 Cathode Catalyst and Membrane Bioreactor

G. D. Bhowmick1, Sovik Das2, M. M. Ghangrekar2, A. Mitra1, R. Banerjee1
1Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
2Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India

Tóm tắt

A two-stage continuous process was developed for treating medium-strength wastewater combining microbial fuel cell (MFC) using activated carbon (AC)/TiO2 composite as cathode catalyst and submerged membrane bioreactor (MBR). Synthetic wastewater, having total chemical oxygen demand (COD) of around 3 g/L, was introduced first in the anodic chamber of MFC in a continuous mode of operation followed by aerobic MBR. Submerged hollow-fibre ultra-filtration membrane assembly was attached to draw permeate from MBR. The electrical performance of MFC was evaluated by polarisation, which showed a maximum volumetric power density of 1.02 W/m3 with much lower whole-cell internal resistance of 10 Ω. The coulombic efficiency of MFC was estimated to be 0.31%, demonstrating AC/TiO2 composite as a promising cathode catalyst for applications in MFC. The permeate of MFC–MBR system showed 98.3 ± 0.3% and 81.9 ± 1.8% of COD and total Kjeldahl nitrogen removal efficiency, respectively, producing permeate with total suspended solids concentration of less than 5 mg/L. Thus, a two-stage reliable process for treatment of wastewater is demonstrated using integrated MFC–MBR for generating high-quality recyclable effluent and facilitating recovery of bio-electricity.

Tài liệu tham khảo

C.P.L. Grady, G.T. Daigger, H.C. Lim, Hazard. Waste. (1999). https://doi.org/10.1007/s13398-014-0173-7.2 S.E. Oh, B.E. Logan, Water Res. (2005). https://doi.org/10.1016/j.watres.2005.09.019 S. Das, P. Chatterjee, M.M. Ghangrekar, Water Sci. Technol. (2018). https://doi.org/10.2166/wst.2018.002 S.T. Oh, J.R. Kim, G.C. Premier, T.H. Lee, C. Kim, W.T. Sloan, Biotechnol. Adv. (2010). https://doi.org/10.1016/j.biotechadv.2010.07.008 C.A. Martínez-Huitle, S. Ferro, Chem. Soc. Rev. (2006). https://doi.org/10.1039/b517632h A.T. Maulidiyah, d Nurwahidah, d Wibowo, A.T. Maulidiyah, m Nurdin, Environ. Nanotech. Monit. Manag. (2016). https://doi.org/10.1016/j.enmm.2017.06.002 H. Feng, Y. Liang, K. Guo, W. Chen, D. Shen, L. Huang, Y. Zhou, M. Wang, Y. Long, Environ. Sci. Technol. Lett. (2016). https://doi.org/10.1021/acs.estlett.6b00410 S. Ait Ali Yahia, L. Hamadou, M.J. Salar-García, A. Kadri, V.M. Ortiz-Martínez, F.J. Hernández-Fernández, A. Pérezde los Rios, N. Benbrahim, Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.07.018 M. Zhang, Y. Wang, P. Liang, X. Zhao, M. Liang, B. Zhou, Chemosphere (2019). https://doi.org/10.1016/j.chemosphere.2018.09.085 P.N. Venkatesan, S. Dharmalingam, Mater. Renew. Sustain Energy (2016). https://doi.org/10.1007/s40243-016-0074-0 N. Abdullaha, S.K. Kamarudin, J. of Power Sour. (2015). https://doi.org/10.1016/j.jpowsour.2014.12.014 J. Ma, Z. Wang, D. He, Y. Li, Z. Wu, Water Res. (2015). https://doi.org/10.1016/j.watres.2015.03.033 P. Côté, H. Buisson, C. Pound, G. Arakaki, Desalination (1997). https://doi.org/10.1016/S0011-9164(97)00128-8 L. Van Dijk, G.C.G. Roncken, Water Sci. Technol. (1997). https://doi.org/10.1016/S0273-1223(97)00219-9 S. Rosenberger, U. Krüger, R. Witzig, W. Manz, U. Szewzyk, M. Kraume, Water Res. (2002). https://doi.org/10.1016/S0043-1354(01)00223-8 S.H. Yoon, H.S. Kim, S. Lee, Process Biochem. (2004). https://doi.org/10.1016/j.procbio.2003.09.023 Z.S. Han, J.Y. Tian, H. Liang, J. Ma, H.R. Yu, K. Li, A. Ding, G.B. Li, Bioresour. Technol. (2013). https://doi.org/10.1016/j.biortech.2012.11.151 S.W. Hasan, M. Elektorowicz, J.A. Oleszkiewicz, Bioresour. Technol. (2012). https://doi.org/10.1016/j.biortech.2012.06.043 J. Cha, S. Choi, H. Yu, H. Kim, C. Kim, Bioelectrochemistry (2010). https://doi.org/10.1016/j.bioelechem.2009.07.009 B. Min, I. Angelidaki, J. Power Sour. (2008). https://doi.org/10.1016/j.jpowsour.2008.01.076 H. Yuan, Z. He, Bioresour. Technol. (2015). https://doi.org/10.1016/j.biortech.2015.05.058 W. Liu, H. Jia, J. Wang, H. Zhang, C. Xin, Y. Zhang, Environ. Sci. Pollut. Res. (2018). https://doi.org/10.1007/s11356-018-2656-0 Y. Wang, H. Jia, J. Wang, B. Cheng, G. Yang, F. Gao, Bioresour. Technol. (2018). https://doi.org/10.1016/j.biortech.2018.08.122 A. Lu, Y. Li, S. Jin, H. Ding, C. Zeng, X. Wang, C. Wang, Energy Fuels (2010). https://doi.org/10.1021/ef901053j G.S. Jadhav, M.M. Ghangrekar, Bioresour. Technol. (2009). https://doi.org/10.1016/j.biortech.2008.07.041 B.E. Logan, Microbial fuel cells (Wiley, Hoboken, 2008). https://doi.org/10.1002/9780470258590 APHA, Water Environment Federation, American Water Works Association, Stand. Methods Exam. Water Wastewater. (1999) G.D. Bhowmick, M.T. Noori, I. Das, B. Neethu, M.M. Ghangrekar, A. Mitra, Int. J. Hydrogen Energy (2018). https://doi.org/10.1016/J.IJHYDENE.2018.02.188 T.T. More, M.M. Ghangrekar, Bioresour. Technol. (2010). https://doi.org/10.1016/j.biortech.2009.08.045 B.R. Tiwari, M.M. Ghangrekar, Energy Fuels (2015). https://doi.org/10.1021/ef5028197 T. Waller, C. Chen, S.L. Walker, Environ. Eng. Sci. (2017). https://doi.org/10.1089/ees.2016.0364 X. Su, Y. Tian, Z. Sun, Y. Lu, Z. Li, Biosens. Bioelectron. (2013). https://doi.org/10.1016/j.bios.2013.04.005 M.T. Noori, G.D. Bhowmick, B.R. Tiwari, M.M. Ghangrekar, C.K. Mukhrejee, MRS Adv. (2018). https://doi.org/10.1557/adv.2018 S.G. Ray, G.D. Bhowmick, M.M. Ghangrekar, A. Mitra, Advances in wastewater treatment by combined microbial fuel cell-membrane bioreactor, in 13th IWA Specialized Conference on Small Water and Wastewater Systems, (2016). http://uest.ntua.gr/swws/proceedings/pdf/SWWS2016_Ghosh_Ray_Full_Paper.pdf Y. Tian, H. Li, L. Li, X. Su, Y. Lu, W. Zuo, J. Zhang, Biosens. Bioelectron. (2014). https://doi.org/10.1016/j.bios.2014.08.070 L. Xu, G.Q. Zhang, G.E. Yuan, H.Y. Liu, J.D. Liu, F.L. Yang, RSC Adv. (2015). https://doi.org/10.1039/c5ra00735f T. Yu, L. Liu, Q. Yang, J. Song, F. Yang, RSC Adv. (2015). https://doi.org/10.1039/C5RA05965H G. Zhou, Y. Zhou, G. Zhou, L. Lu, X. Wan, H. Shi, Bioresour. Technol. (2015). https://doi.org/10.1016/j.biortech.2015.08.032 T. Alvarino, S. Suárez, M. Garrido, J.M. Lema, F. Omil, Chemosphere (2016). https://doi.org/10.1016/j.chemosphere.2015.09.016 K.Y. Kim, W. Yang, Y. Ye, N. LaBarge, B.E. Logan, Bioresour. Technol. (2016). https://doi.org/10.1016/j.biortech.2016.02.067 Y. Li, L. Liu, F. Yang, J. Mem. Sci. (2016). https://doi.org/10.1016/j.memsci.2016.01.038 J. Wang, F. Bi, H.H. Ngo, W. Guo, H. Jia, H. Zhang, X. Zhang, Bioresour. Technol. (2016). https://doi.org/10.1016/j.biortech.2015.10.042 G.D. Bhowmick, I. Chakraborty, M.M. Ghangrekar, A. Mitra, Bioresour. Technol. Reports (2019). https://doi.org/10.1016/j.biteb.2019.100303