Improved WO 3 photocatalytic efficiency using ZrO 2 and Ru for the degradation of carbofuran and ampicillin

Journal of Hazardous Materials - Tập 302 - Trang 225-231 - 2016
Mohamed Gar Alalm1, Shinichi Ookawara2, Daisuke Fukushi3,4, Akira Sato4, Ahmed Tawfik5
1Department of Public Works Engineering, Faculty of Engineering, Mansoura University, 35516 Aldakahleya, Egypt.
2Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
3Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-S2-16, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
4Toshiba Materials co., Ltd., Development Group, Development and Engineering Department, 8 Shinsugita-Cho, Isogo-Ku, Yokohama 235-8522, Japan
5Department of Environmental Engineering, School of Energy, Environmental, Chemical and Petrochemical, Egypt-Japan University of Science and Technology (E-Just), New Borg El Arab City, 21934, Alexandria, Egypt

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gar Alalm, 2015, Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation, J. Environ. Chem. Eng., 3, 46, 10.1016/j.jece.2014.12.009

Méndez-Arriaga, 2009, Mineralization enhancement of a recalcitrant pharmaceutical pollutant in water by advanced oxidation hybrid processes, Water Res., 43, 3984, 10.1016/j.watres.2009.06.059

Chelliapan, 2006, Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics, Water Res., 40, 507, 10.1016/j.watres.2005.11.020

Elmolla, 2010, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis, Desalination, 252, 46, 10.1016/j.desal.2009.11.003

Benitez, 2011, Comparison of different chemical oxidation treatments for the removal of selected pharmaceuticals in water matrices, Chem. Eng. J., 168, 1149, 10.1016/j.cej.2011.02.001

Elmolla, 2010, Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution, Desalination, 256, 43, 10.1016/j.desal.2010.02.019

Gar Alalm, 2014, Investigation of optimum conditions and costs estimation for degradation of phenol by solar photo-Fenton process, Appl. Water Sci.

Garcia, 2007, Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems, J. Hazard. Mater., 147, 105, 10.1016/j.jhazmat.2006.12.053

Selvam, 2007, Enhancement of UV-assisted photo-Fenton degradation of reactive orange 4 using TiO2-P25 nanoparticles, Sep. Purif. Technol., 54, 241, 10.1016/j.seppur.2006.09.012

Gar Alalm, 2014, Solar photocatalytic degradation of phenol by TiO 2 /AC prepared by temperature impregnation method, Desalination Water Treat., 1

Gar Alalm, 2015, Combined solar advanced oxidation and PAC adsorption for removal of pesticides from industrial wastewater, J. Mater. Environ. Sci., 6, 800

Navarro, 2009, Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight, J. Hazard. Mater., 172, 1303, 10.1016/j.jhazmat.2009.07.137

Cavalheiro, 2008, Photocatalytic decomposition of diclofenac potassium using silver-modified TiO2 thin films, Thin Solid Films, 516, 6240, 10.1016/j.tsf.2007.11.117

Gaya, 2008, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J. Photochem. Photobiol. C, 9, 1, 10.1016/j.jphotochemrev.2007.12.003

Guo, 2006, Degradation of phenol by nanomaterial TiO2 in wastewater, Chem. Eng. J., 119, 55, 10.1016/j.cej.2006.01.017

Fraga, 2013, Photoelectrocatalytic oxidation of hair dye basic red 51 at W/WO3/TiO2 bicomposite photoanode activated by ultraviolet and visible radiation, J. Environ. Chem. Eng., 1, 4, 10.1016/j.jece.2013.04.018

Liu, 2010, Degradation of malachite green on Pd/WO3 photocatalysts under simulated solar light, J. Hazard. Mater., 184, 386, 10.1016/j.jhazmat.2010.08.047

Ma, 2012, Visible-light-driven nonsacrificial water oxidation over tungsten trioxide powder modified with two different cocatalysts, Energy Environ. Sci., 5, 8390, 10.1039/c2ee21801a

Cai, 2009, Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2, J. Environ. Sci., 21, 997, 10.1016/S1001-0742(08)62374-8

Sapawe, 2013, One-pot electro-synthesis of ZrO2-ZnO/HY nanocomposite for photocatalytic decolorization of various dye-contaminants, Chem. Eng. J., 225, 254, 10.1016/j.cej.2013.03.121

Fukushi, 2014, Enhancing the rate of organic material decomposition photo catalyzed by high performance visible light activated tungsten oxide, Electrochem. Soc. Trans., 61, 43

Karim, 2012, WO3 monolayer loaded on ZrO2: Property-activity relationship in n-butane isomerization evidenced by hydrogen adsorption and IR studies, Appl. Cata. A: Gen., 433–434, 49, 10.1016/j.apcata.2012.04.039

Liu, 2007, Preparation and photocatalytic activity of dysprosium doped tungsten trioxide nanoparticles, Mater. Chem. Phys., 104, 377, 10.1016/j.matchemphys.2007.03.028

Upadhyay, 2014, Structural and alcohol response characteristics of Sn-doped WO 3 nanosheets, Sens. Actuat. B Chem., 193, 19, 10.1016/j.snb.2013.11.049

Yori, 2000, Influence of the crystalline structure of ZrO 2 on the metallic properties of Pt in Pt/WO 3–ZrO 2 catalysts, Catal. Lett., 65, 205, 10.1023/A:1019050228894

Zhang, 2011, Synthesis of acetyl salicylic acid over WO3/ZrO2 solid superacid catalyst, Chem. Eng. J., 174, 236, 10.1016/j.cej.2011.09.010

Schott, 2009, Reduction of NOx by H2 on Pt/WO3/ZrO2 catalysts in oxygen-rich exhaust, Appl. Catal. B: Environ., 87, 18, 10.1016/j.apcatb.2008.08.021

Nie, 2012, In2O3-doped Pt/WO3/ZrO2 as a novel efficient catalyst for hydroisomerization of n-heptane, Appl. Cata. A: Gen., 433–434, 69, 10.1016/j.apcata.2012.04.040

Whitman, 2014, Formation and electrochemical characterization of anodic ZrO2–WO3 mixed oxide nanotubular arrays, Appl. Surf. Sci., 303, 406, 10.1016/j.apsusc.2014.03.016

Park, 2010, Tungsten oxide zirconia as solid superacid catalyst for esterification of waste acid oil (dark oil), Bioresour. Technol., 101, 6589, 10.1016/j.biortech.2010.03.109

Hayat, 2011, Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3, J. Hazard. Mater., 186, 1226, 10.1016/j.jhazmat.2010.11.133

Lopez-Alvarez, 2011, Solar photocatalitycal treatment of carbofuran at lab and pilot scale: effect of classical parameters, evaluation of the toxicity and analysis of organic by-products, J. Hazard. Mater., 191, 196, 10.1016/j.jhazmat.2011.04.060

Li, 2013, A thermally stable mesoporous ZrO 2–CeO 2–TiO 2 visible light photocatalyst, Chem. Eng. J., 229, 118, 10.1016/j.cej.2013.05.106

McManamon, 2011, Improved photocatalytic degradation rates of phenol achieved using novel porous ZrO2-doped TiO2 nanoparticulate powders, J. Hazard. Mater., 193, 120, 10.1016/j.jhazmat.2011.07.034

Ulgen, 2009, Conversion of glycerol to acrolein in the presence of WO3/ZrO2 catalysts, Catal. Lett., 131, 122, 10.1007/s10562-009-9923-0

Chen, 2012, Thiolation of dimethyl sulfide to methanethiol over WO3/ZrO2 catalysts, J. Mol. Catal. A: Chem., 365, 60, 10.1016/j.molcata.2012.08.009

Zhao, 2013, The first experimental demonstration of beneficial effects of sub-nanometer platinum particles for photocatalysis, Chem. Eng. J., 217, 266, 10.1016/j.cej.2012.11.110

Emilio, 2006, Phenol photodegradation on platinized-TiO2 photocatalysts related to charge-carrier dynamics, Langmuir, 22, 3606, 10.1021/la051962s

Amala Infant Joice, 2012, Visible active metal decorated titania catalysts for the photocatalytic degradation of amidoblack-10B, Chem. Eng. J., 210, 385, 10.1016/j.cej.2012.08.103

Andryushina, 2013, Photopolymerization of acrylamide induced by colloidal graphene oxide, J. Photochem. Photobiol. A: Chem., 256, 1, 10.1016/j.jphotochem.2013.02.009

Muhammad, 2012, Heterogeneous activation of peroxymonosulphate by supported ruthenium catalysts for phenol degradation in water, J. Hazard. Mater., 215–216, 183, 10.1016/j.jhazmat.2012.02.045

Javier Benitez, 2002, Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes, J. Hazard. Mater., 89, 51, 10.1016/S0304-3894(01)00300-4

Yang, 2013, Photocatalytic degradation of carbofuran in TiO2 aqueous solution: Kinetics using design of experiments and mechanism by HPLC/MS/MS, J. Environ. Sci., 25, 1680, 10.1016/S1001-0742(12)60217-4

Katsumata, 2005, Degradation of carbofuran in aqueous solution by Fe (III) aquacomplexes as effective photocatalysts, J. Photochem. Photobiol. A: Chem., 170, 239, 10.1016/j.jphotochem.2004.09.002

Ghauch, 2009, Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles, Environ. Pollut., 157, 1626, 10.1016/j.envpol.2008.12.024

Olad, 2015, Use of response surface methodology for optimization of the photocatalytic degradation of ampicillin by ZnO /polyaniline nanocomposite, Res. Chem. Intermed., 1351, 10.1007/s11164-013-1278-x

Elmolla, 2010, Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process, J. Hazard. Mater., 173, 445, 10.1016/j.jhazmat.2009.08.104

Li, 2008, Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO2-coated activated carbon catalyst: effects of initial RhB content, light intensity and TiO2 content in the catalyst, Chem. Eng. J., 142, 147, 10.1016/j.cej.2008.01.009

Khraisheh, 2012, Phenol degradation by powdered metal ion modified titanium dioxide photocatalysts, Chem. Eng. J., 213, 125, 10.1016/j.cej.2012.09.108

Bekkouche, 2004, Study of adsorption of phenol on titanium oxide (TiO2), Desalination, 166, 355, 10.1016/j.desal.2004.06.090

Xin, 2014, Photoelectrocatalytic degradation of 4-nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes, Chem. Eng. J., 242, 162, 10.1016/j.cej.2013.12.068

Ramos-Delgado, 2013, Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide, J. Hazard. Mater., 263, 36, 10.1016/j.jhazmat.2013.07.058

Shaban, 2013, Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations, Chemosphere, 91, 307, 10.1016/j.chemosphere.2012.11.035

Kartal, 2001, Photocatalytic destruction of phenol by TiO2powders, Chem. Eng. Technol., 24, 645, 10.1002/1521-4125(200106)24:6<645::AID-CEAT645>3.0.CO;2-L