Improved Self-Stabilizing Algorithms for L(2, 1)-Labeling Tree Networks
Tóm tắt
Từ khóa
Tài liệu tham khảo
Afek, Y., Kutten, S., Yung, M.: Memory-efficient self-stabilizing protocols for general networks. In: van Leeuwen, J., Santoro, N. (eds.) Proceedings of Distributed Algorithms. LNCS, vol. 486, pp. 15–28. Springer, Berlin (1990)
Antonoiu, G., Srimani, P.K.: Distributed self-stabilizing algorithm for minimum spanning tree construction. In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Proceedings of Euro-Par’97: Parallel Processing. LNCS, vol. 1300, pp. 480–487. Springer, Berlin (1997)
Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In: Proceedings of the 23rd International Conference on Distributed Computing Systems, pp. 20–26 (2003)
Bodlaender H.L., Kloks T., Tan R.B., Leeuwen J.V.: Approximations for λ-colorings of graphs. Comput. J. 47, 193–204 (2004)
Bruell S.C., Ghosh S., Karaata M.H., Pemmaraju S.V.: Self-stabilizing algorithms for finding centers and medians of trees. SIAM J. Comput. 29, 600–614 (1999)
Calamoneri T.: The L(h, k)-labelling problem: a survey and annotated bibliography. Comput. J. 49, 585–608 (2006)
Calamoneri T., Petreschi R.: L(h,1)-labeling subclasses of planar graphs. J. Parallel Distrib. Comput. 64, 414–426 (2004)
Calamoneri, T., Petreschi, R.: L(2, 1)-labeling of planar graphs. In: Proceedings of the 5th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, pp. 28–33. ACM, New York (2001)
Chang G.J., Kuo D.: The L(2, 1)-labeling problem on graphs. SIAM J. Discret. Math. 9, 309–316 (1996)
Chang G.J., Ke W.-T., Kuo D., Liu D.D.-F., Yeh R.K.: On L(d, 1)-labelings of graphs. Discret. Math. 220, 57–66 (2000)
Chaudhuri, P., Thompson, H.: A self-stabilizing algorithm for L(2, 1)-labeling trees. In: Fahringer, T., Hamza, M.H. (eds.) Proceedings of the 23rd IASTED International Multi-Conference: Parallel and Distributed Computing and Networks, pp. 627–632 (2005)
Chaudhuri P.: A self-stabilizing algorithm for detecting fundamental cycles in a graph. J. Comput. Syst. Sci. 59, 84–93 (1999)
Chen N.-S., Yu H.-P., Huang S.-T.: A self-stabilizing algorithm for constructing spanning trees. Inform. Process. Lett. 39, 147–151 (1991)
Dijkstra E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17, 643–644 (1974)
Dolev S., Israeli A., Moran S.: Self-stabilization of dynamic systems assuming only read/write atomicity. Distrib. Comput. 7, 3–16 (1993)
Gairing M., Goddard W., Hedetniemi S.T., Kristiansen P., McRae A.A.: Distance-two information in self-stabilizing algorithms. Parallel Process. Lett. 14, 387–398 (2004)
Georges J.P., Mauro D.W.: Generalized vertex labelings with a condition at distance two. Congr. Numer. 109, 141–159 (1995)
Georges J.P., Mauro D.W.: Labeling trees with a condition at distance two. Discret. Math. 269, 127–148 (2003)
Ghosh S., Karaata M.H.: A self-stabilizing algorithm for coloring planar graphs. Distrib. Comput. 7, 55–59 (1993)
Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under unfair scheduler. In: Sakellariou, R., Keane, J., Gurd, J., Freeman, L. (eds.) Proceedings of Euro-Par’01: Parallel Processing. LNCS, vol. 2150, pp. 458–465. Springer, Berlin (2001)
Griggs J.R., Yeh R.K.: Labeling graphs with a condition at distance two. SIAM J. Discret. Math. 5, 586–595 (1992)
Hedetniemi S.T., Jacobs D.P., Srimani P.K.: Linear time self-stabilizing colorings. Inform. Process. Lett. 87, 251–255 (2003)
Huang S.-T., Chen N.-S.: A self-stabilizing algorithm for constructing breadth-first trees. Inform. Process. Lett. 41, 109–117 (1992)
Hsu S.-C., Huang S.-T.: A self-stabilizing algorithm for maximal matching. Inform. Process. Lett. 43, 77–81 (1992)
Karaata M.H., Chaudhuri P.: A self-stabilizing algorithm for bridge finding. Distrib. Comput. 12, 47–53 (1999)
Karaata M.H., Chaudhuri P.: A dynamic self-stabilizing algorithm for constructing a transport net. Computing 68, 143–161 (2002)