Improved Performance and Stability of All‐Inorganic Perovskite Light‐Emitting Diodes by Antisolvent Vapor Treatment

Advanced Functional Materials - Tập 27 Số 28 - 2017
Wu Chen1, Yatao Zou1, Tian Wu1, Muyang Ban1, Vincenzo Pecunia1, Yujie Han1, Qipeng Liu1, Tao Song1, Steffen Duhm1, Baoquan Sun1
1Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China

Tóm tắt

All‐inorganic perovskite light‐emitting diodes (LEDs) reveal efficient luminescence with high color purity, but their modest brightness and poor stability are still critical drawbacks. Here, the luminescent efficiency and the stability of perovskite LEDs (PeLEDs) are boosted by antisolvent vapor treatment of CsPbBr3 embedded in a dielectric polymer matrix of polyethylene oxide (PEO). A unique method is developed to obtain high quality CsPbBr3 emitting layers with low defects by controlling their grain sizes. CsPbBr3 in PEO matrix is post‐treated with antisolvent of chloroform (CF), leading to microcrystals with a size of ≈5 µm along the in‐plane direction with active emitting composite of 90%. A device based on CF post‐treatment (CsPbBr3‐PEO‐CF) film displays a brightness of up to 51890 cd m−2 with an external quantum efficiency of 4.76%. CsPbBr3‐PEO‐CF PeLED still maintains 82% of its initial efficiency after 80 h continuous operation in ambient air, which indicates relatively good device stability. This work highlights that film quality is not only key to promoting fluorescence in CsPbBr3, but also to achieving higher performance PeLEDs.

Từ khóa


Tài liệu tham khảo

10.1002/adfm.201600958

10.1002/adma.201405217

10.1038/nature13829

10.1039/C6NR00818F

10.1002/adfm.201600109

10.1002/adma.201602513

10.1021/acs.nanolett.5b00235

10.1021/acs.jpclett.5b00732

10.1002/adma.201403751

10.1021/acs.jpclett.5b02011

10.1021/acs.accounts.5b00465

10.1021/cm502468k

10.1039/C4CS00458B

10.1039/c3ta10518k

10.1021/acs.nanolett.5b04053

10.1039/c2ee02806a

10.1002/anie.201406466

10.1002/adma.201601105

10.1021/jacs.6b08900

10.1002/adma.201603081

10.1002/adma.201502567

10.1021/acs.jpclett.6b01942

10.1021/acs.jpclett.6b00002

10.1021/jz5005285

10.1038/nnano.2016.110

10.1126/science.aad1818

10.1038/nmat3911

10.1021/ja512833n

10.1021/ja511198f

10.1021/jacs.5b04503

10.1038/nature12509

10.1002/adma.201502490

10.1002/adma.201401685

10.1038/nmat4014

10.1002/aenm.201502087

10.1016/j.solener.2016.04.017

10.1021/am302893r

10.1021/acs.nanolett.5b04110

10.1039/c3cp43083a

10.1021/acsenergylett.6b00236

10.1002/aenm.201600551

10.1002/aenm201300549

10.1039/C4CP03573A

10.1039/C3CP54479F

10.1016/j.jlumin.2011.09.006

10.1021/ja507086b

10.1039/C3EE43161D

10.1038/ncomms6049

10.1021/jz500858a

10.1021/nl4024287

10.1038/nphys3357

10.1016/S0038-1098(03)00566-0