Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Dấu ấn của các tương tác gián tiếp trong mạng lưới kiến–thực vật được trung gian bởi tài nguyên ở các cấp độ tổ chức mạng lưới khác nhau
Oecologia - 2024
Tóm tắt
Các tương tác gián tiếp có vai trò then chốt trong sự tiến hóa của các loài tương tác và sự tập hợp của các quần thể và cộng đồng. Tuy nhiên, mặc dù gần đây đã được nghiên cứu trong mối quan hệ tương hỗ giữa thực vật và động vật ở cấp độ cộng đồng, các tương tác gián tiếp vẫn chưa được nghiên cứu trong những mối quan hệ tương hỗ trung gian tài nguyên giữa các cá thể thực vật chia sẻ các loài động vật khác nhau làm đối tác trong một quần thể (tức là, các mạng lưới dựa trên cá thể). Trong nghiên cứu này, chúng tôi đã phân tích một mạng lưới dựa trên cá thể giữa kiến và thực vật để đánh giá cách mà các thuộc tính của tài nguyên ảnh hưởng đến các mô hình tương tác gián tiếp và cách mà sự thay đổi trong các liên kết gián tiếp để lại dấu ấn trong mạng lưới qua nhiều cấp độ tổ chức mạng. Sử dụng các phương pháp phân tích bổ sung, chúng tôi đã mô tả các mô hình của các tương tác gián tiếp ở quy mô vi, vĩ mô và đại quy mô. Chúng tôi dự đoán rằng các cây cung cấp mức lượng và chất lượng đường mật trung bình sẽ tương tác với nhiều quần thể kiến đa dạng hơn. Sự gia tăng số lượng các loài kiến sẽ tạo ra tiềm năng cao hơn cho các tương tác gián tiếp ở tất cả các quy mô được đánh giá. Chúng tôi phát hiện rằng các thuộc tính của đường mật đã điều chỉnh các mô hình tương tác gián tiếp của các cá thể thực vật share các đối tác tương hỗ, để lại dấu ấn qua các quy mô mạng khác nhau. Theo hiểu biết của chúng tôi, đây là nghiên cứu đầu tiên theo dõi các tương tác gián tiếp tại nhiều quy mô trong một mạng lưới dựa trên cá thể. Chúng tôi cho thấy rằng các đặc điểm chức năng của các loài tương tác, chẳng hạn như các thuộc tính của đường mật, có thể dẫn đến những thay đổi trong các tương tác gián tiếp, có thể được theo dõi qua các cấp độ tổ chức mạng khác nhau được đánh giá.
Từ khóa
#tương tác gián tiếp #mạng lưới kiến-thực vật #trung gian tài nguyên #cá thể #thuộc tính đường mậtTài liệu tham khảo
Abdala-Roberts L, Puentes A, Finke DL, Marquis RJ, Montserrat M, Poelman EH, Rasmann S, Sentis A, van Dam NM, Wimp G, Mooney K, Björkman C (2019) Tri-trophic interactions: bridging species, communities and ecosystems. Ecol Lett 22:2151–2167. https://doi.org/10.1111/ele.13392
Adams BJ, Gora EM, Donaldson-Matasci MC, Robinson EJ, Powell S (2023) Competition and habitat availability interact to structure arboreal ant communities across scales of ecological organization. Proc Royal Soc B 290:20231290. https://doi.org/10.1098/rspb.2023.1290
Arroyo-Correa B, Bartomeus I, Jordano P (2021) Individual-based plant–pollinator networks are structured by phenotypic and microsite plant traits. J Ecol 109:2832–2844. https://doi.org/10.1111/1365-2745.13694
Arroyo-Correa B, Jordano P, Bartomeus I (2023) Intraspecific variation in species interactions promotes the feasibility of mutualistic assemblages. Ecol Lett 26:448–459. https://doi.org/10.1111/ele.14163
Bairey E, Kelsic ED, Kishony R (2016) High-order species interactions shape ecosystem diversity. Nat Commun 7(1):12285. https://doi.org/10.1038/ncomms12285
Baiser B, Elhesha R, Kahveci T (2016) Motifs in the assembly of food web networks. Oikos 125:480–491. https://doi.org/10.1111/oik.02532
Ballarin CS, Hachuy-Filho L, Sanz-Veiga PA, Amorim FW (2019) The resource-mediated modular structure of a non-symbiotic ant–plant mutualism. Ecol Entomol 45:121–129. https://doi.org/10.1111/een.12780
Barbosa M, Fernandes GW, Morris RJ (2019) Interaction engineering: Non-trophic effects modify interactions in an insect galler community. J Anim Ecol 88:1168–1177. https://doi.org/10.1111/1365-2656.13025
Barbosa M, Fernandes GW, Morris RJ (2022) Experimental evidence for a hidden network of higher-order interactions in a diverse arthropod community. Curr Biol 33:381–388. https://doi.org/10.1016/j.cub.2022.11.057
Bascompte J, Jordano P (2007) Plant–animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818
Bascompte J, Stouffer DB (2009) The assembly and disassembly of ecological networks. Philos Trans R Soc B Biol Sci 364:1781–1787. https://doi.org/10.1098/rstb.2008.0226
Bergamo PJ, Wolowski M, Maruyama PK, Vizentin-Bugoni J, Carvalheiro LG, Sazima M (2017) The potential indirect effects among plants via shared hummingbird pollinators are structured by phenotypic similarity. Ecology 98:1849–1858. https://doi.org/10.1002/ecy.1859
Bergamo PJ, Freitas L, Sazima M, Wolowski M (2022) Pollinator-mediated facilitation alleviates pollen limitation in a plant–hummingbird network. Oecologia 198:205–217. https://doi.org/10.1007/s00442-021-05095-3
Blüthgen N, Fiedler K (2004a) Competition for composition: lessons from nectar-feeding ant communities. Ecology 85:1479–1485. https://doi.org/10.1890/03-0430
Blüthgen N, Fiedler K (2004b) Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. J Anim Ecol 73:155–166. https://doi.org/10.1111/j.1365-2656.2004.00789.x
Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Forister HCD, ML, (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28. https://doi.org/10.1086/343878
Bolnick DI, Svanbäck R, Araújo MS, Persson L (2007) Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc Natl Acad Sci 104(24):10075–10079. https://doi.org/10.1073/pnas.0703743104
Bronstein JL, Dieckmann U, Ferrière R (2009) Coevolutionary dynamics and the Conservation of mutualisms. In: Ferrère R, Dieckmann U, Couvet D (eds) Evolutionary Conservation Biology. Cambridge Univ. Press, pp 305–326
Calixto ES, Lange D, Del-Claro K (2018) Protection mutualism: an overview of ant–plant interactions mediated by extrafloral nectaries. Oecologia Aust 22:410–425. https://doi.org/10.4257/oeco.2018.2204.05
Calixto ES, Lange D, Del-Claro K (2021a) Net benefits of a mutualism: Influence of the quality of extrafloral nectar on the colony fitness of a mutualistic ant. Biotropica 53:846–856. https://doi.org/10.1111/btp.12925
Calixto ES, Lange D, Bronstein J, Torezan-Silingardi HM, Del-Claro K (2021b) Optimal defense theory in an ant–plant mutualism: extrafloral nectar as an induced defence is maximized in the most valuable plant structures. J Ecol 109:167–178. https://doi.org/10.1111/1365-2745.13457
Carvalheiro LG, Biesmeijer JC, Benadi G, Fründ J, Stang M, Bartomeus I, Kaiser-Bunbury CN, Baude M, Gomes SIF, Merckx V, Baldock KCR, Bennett ATD, Boada R, Bommarco R, Cartar R, Chacoff N, Dänhardt J, Dicks LV, Dormann CF, Ekroos J, Henson KSE, Holzschuh A, Junker RR, Lopezaraiza-Mikel M, Memmott J, Montero-Castaño A, Nelson IL, Petanidou T, Power EF, Rundlöf M, Smith HG, Stout JC, Temitope K, Tscharntke T, Tscheulin T, Vilà M, Kunin WE (2014) The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecol Lett 17:1389–1399. https://doi.org/10.1111/ele.12342
Cosmo LG, Assis APA, de Aguiar MAM, Pires MM, Valido A, Jordano P, Thompson JN, Bascompte J, Guimarães PR Jr (2023) Indirect effects shape species fitness in coevolved mutualistic networks. Nature. https://doi.org/10.1038/s41586-023-06319-7
Da Silva CHF, Arnan X, Andersen AN, Leal IR (2019) Extrafloral nectar as a driver of ant community spatial structure along disturbance and rainfall gradients in Brazilian dry forest. J Trop Ecol 35:280–287. https://doi.org/10.1017/S0266467419000245
Dáttilo W, Guimaraes PR Jr, Izzo TJ (2013) Spatial structure of ant–plant mutualistic networks. Oikos 122:1643–1648. https://doi.org/10.1111/j.1600-0706.2013.00562.x
Dáttilo W, Marquitti FM, Guimarães PR Jr, Izzo TJ (2014a) The structure of ant–plant ecological networks: is abundance enough? Ecology 95:475–485. https://doi.org/10.1890/12-1647.1
Dáttilo W, Díaz-Castelazo C, Rico-Gray V (2014b) Ant dominance hierarchy determines the nested pattern in ant–plant networks. Biol J Linn Soc 113:405–414. https://doi.org/10.1111/bij.12350
Dáttilo W, Fagundes R, Gurka CA, Silva MS, Vieira MC, Izzo TJ, Díaz-Castelazo C, Del-Claro K, Rico-Gray V (2014c) Individual-based ant–plant networks: diurnal-nocturnal structure and species-area relationship. PLoS ONE 9:e99838. https://doi.org/10.1371/journal.pone.0099838
Davidson DW (1997) The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol J Linn Soc 61:153–181. https://doi.org/10.1111/j.1095-8312.1997.tb01785.x
Del-Claro K, Rico-Gray V, Torezan-Silingardi HM, Alves-Silva E, Fagundes R, Lange D, Dáttilo W, Vilela AA, Aguirre A, Rodriguez-Morales D (2016) Loss and gains in ant–plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insectes Soc 63:207–221. https://doi.org/10.1007/s00040-016-0466-2
Delmas E, Besson M, Brice MH, Burkle LA, Dalla Riva GV, Fortin MJ, Gravel D, Guimarães PR Jr, Hembry DH, Newman EA, Olesen JM, Pires MM, Yeakel JD, Poisot T (2019) Analyzing ecological networks of species interactions. Biol Rev 94:16–36. https://doi.org/10.1111/brv.12433
Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24. https://doi.org/10.2174/1874213000902010007
Fagundes R, Dáttilo W, Ribeiro SP, Rico-Gray V, Del-Claro K (2016) Food source availability and interspecific dominance as structural mechanisms of ant–plant-hemipteran multitrophic networks. Arthropod Plant Interact 10:207–220. https://doi.org/10.1007/s11829-016-9428-x
Fagundes R, Dáttilo W, Ribeiro SP, Rico-Gray V, Jordano P, Del-Claro K (2017) Differences among ant species in plant protection are related to production of extrafloral nectar and degree of leaf herbivory. Biol J Linn Soc 122:71–83. https://doi.org/10.1093/biolinnean/blx059
Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, Firth D, Friendly M, Gorjanic G, Graves S, Heiberger R, Krivitsky P, Laboissiere R, Maechler M, Monette G, Murdoch D, Nilsson H, Ogle D, Ripley B, Short T, Venables W, Walker S, Winsemius D, Zeileis A (2012) Package ‘car.’ R Foundation for Statistical Computing, Vienna, p 16
Gibb H, Parr CL (2010) How does habitat complexity affect ant foraging success? A test using functional measures on three continents. Oecologia 164:1061–1073. https://doi.org/10.1007/s00442-010-1703-4
Gibb H, Bishop TR, Leahy L, Parr CL, Lessard J-P, Sanders NJ, Shik JZ, Ibarra-Isassi J, Narendra A, Dunn RR, Wright IJ (2023) Ecological strategies of (pl)ants: Towards a worldwide worker economic spectrum for ants. Funct Ecol 37:13–25. https://doi.org/10.1111/1365-2435.14135
Giling DP, Ebeling A, Eisenhauer N, Meyer ST, Roscher C, Rzanny M, Voigt W, Weisser WW, Hines J (2019) Plant diversity alters the representation of motifs in food webs. Nat Comm 10:1226. https://doi.org/10.1038/s41467-019-08856-0
Goldenberg R, Varassin IG (2001) Sistemas reprodutivos de espécies de Melastomataceae da Serra do Japi, Jundiaí, São Paulo, Brasil. Braz J Bot 24:283–288. https://doi.org/10.1590/S0100-84042001000300006
Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge
Grilli J, Barabás G, Michalska-Smith MJ, Allesina S (2017) Higher-order interactions stabilize dynamics in competitive network models. Nature 548:210–213. https://doi.org/10.1038/nature23273
Guimarães PR Jr, Rico-Gray V, dos Reis SF, Thompson JN (2006) Asymmetries in specialization in ant–plant mutualistic networks. Proc Royal Soc B Biol Sci 273:2041–2047. https://doi.org/10.1098/rspb.2006.3548
Guimarães PR Jr, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14(9):877–885. https://doi.org/10.1111/j.1461-0248.2011.01649.x
Guimarães PR Jr, Pires MM, Jordano P, Bascompte J, Thompson JN (2017) Indirect effects drive coevolution in mutualistic networks. Nature 550:511–514. https://doi.org/10.1038/nature24273
Hammill E, Kratina P, Vos M, Petchey OL, Anholt BR (2015) Food web persistence is enhanced by non-trophic interactions. Oecologia 178:549–556. https://doi.org/10.1007/s00442-015-3244-3
Heil M (2015) Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annu Rev Entomol 60:213–232. https://doi.org/10.1146/annurev-ento-010814-020753
Heil M, McKey D (2003) Protective ant–plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst 34:425–553. https://doi.org/10.1146/annurev.ecolsys.34.011802.132410
Heil M, Fiala B, Baumann B, Linsenmair KE (2000) Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Funct Ecol 14:749–757. https://doi.org/10.1046/j.1365-2435.2000.00480.x
Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am Nat 129:657–677. https://doi.org/10.1086/284665
Lange D, Dattilo W, Del-Claro K (2013) Influence of extrafloral nectary phenology on ant–plant mutualistic networks in a neotropical savanna. Ecol Entomol 38:463–469. https://doi.org/10.1111/een.12036
Lange D, Calixto ES, Del-Claro K (2017) Variation in extrafloral nectary productivity influences the ant foraging. PLoS ONE 12:e0169492. https://doi.org/10.1371/journal.pone.0169492
Lanuza JB, Allen-Perkins A, Bartomeus I (2023) The non-random assembly of network motifs in plant–pollinator networks. J Anim Ecol 92:760–773. https://doi.org/10.1111/1365-2656.13889
Lenth RV (2016) Least-squares means: the R Package lsmeans. J Stat Softw 69:1–33. https://doi.org/10.18637/jss.v069.i01
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827. https://doi.org/10.1126/science.298.5594.824
Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of evolved and designed networks. Science 303:1538–1542. https://doi.org/10.1126/science.108916
Moura RF, Del-Claro K (2023) Plants with extrafloral nectaries share indirect defenses and shape the local arboreal ant community. Oecologia 201:73–82. https://doi.org/10.1007/s00442-022-05286-6
Müller CB, Adriaanse ICT, Belshaw R, Godfray HCJ (1999) The structure of an aphid–parasitoid community. J Anim Ecol 68(2):346–370. https://doi.org/10.1046/j.1365-2656.1999.00288.x
Nuismer SL, Jordano P, Bascompte J (2013) Coevolution and the architecture of mutualistic networks. Evolution 67(2):338–354. https://doi.org/10.1111/j.1558-5646.2012.01801.x
Pacelhe FT, Costa FV, Neves FS, Bronstein J, Mello MA (2019) Nectar quality affects ant aggressiveness and biotic defense provided to plants. Biotropica 51:196–204. https://doi.org/10.1111/btp.12625
Parr CL (2008) Dominant ants can control assemblage species richness in a South African savanna. J Anim Ecol 77:1191–1198. https://doi.org/10.1111/j.1365-2656.2008.01450.x
Patefield WM (1981) Algorithm AS 159: an efficient method of generating random R× C tables with given row and column totals. J R Stat Soc Ser C Appl Stat 30:91–97. https://doi.org/10.2307/2346669
Pires MM, Guimarães PR Jr, Araújo MS, Giaretta AA, Costa JCL, dos Reis SF (2011) The nested assembly of individual-resource networks. J Anim Ecol 80:896–903. https://doi.org/10.1111/j.1365-2656.2011.01818.x
Pires MM, O’Donnell JL, Burkle LA, Díaz-Castelazo C, Hembry DH, Yeakel JD, Newman EA, Medeiros LP, Aguiar MAM, Guimarães PR Jr (2020) The indirect paths to cascading effects of extinctions in mutualistic networks. Ecology 101:e03080. https://doi.org/10.1002/ecy.3080
Pulice CE, Packer AA (2008) Simulated herbivory induces extrafloral nectary production in Prunus avium. Funct Ecol 22:801–807. https://doi.org/10.1111/j.1365-2435.2008.01440.x
Pulliam HR (1974) On the theory of optimal diets. Am Nat 108(959):59–74. https://doi.org/10.1086/282885
Quintero E, Rodríguez-Sánchez F, Jordano P (2023) Reciprocity and interaction effectiveness in generalised mutualisms among free-living species. Ecol Lett 26(1):132–146. https://doi.org/10.1111/ele.14141
R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/
Rosseel Y (2012) lavaan: an R package for structural equation modeling. J Stat Softw 48:1–36. https://doi.org/10.18637/jss.v048.i02
Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163. https://doi.org/10.1111/j.1461-0248.2003.00560.x
Shipley B (2002) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, Cambridge
Simmons BI, Cirtwill AR, Baker NJ, Wauchope HS, Dicks LV, Stouffer DB, Sutherland WJ (2019a) Motifs in bipartite ecological networks: uncovering indirect interactions. Oikos 128:154–170. https://doi.org/10.1111/oik.05670
Simmons BI, Sweering MJ, Schillinger M, Dicks LV, Sutherland WJ, Di Clemente R (2019b) bmotif: a package for motif analyses of bipartite networks. Methods Ecol Evol 10:695–701. https://doi.org/10.1111/2041-210X.13149
Simmons BI, Beckerman AP, Hansen K, Maruyama PK, Televantos C, Vizentin-Bugoni J, Dalsgaard B (2021) Niche and neutral processes leave distinct structural imprints on indirect interactions in mutualistic networks. Funct Ecol 35:753–763. https://doi.org/10.1111/1365-2435.13736
Staab M, Methorst J, Peters J, Blüthgen N, Klein AM (2017) Tree diversity and nectar composition affect arthropod visitors on extrafloral nectaries in a diversity experiment. J Plant Ecol 10: 201-212. https://doi.org/10.1093/jpe/rtw017
Strauss SY (1991) Indirect effects in community ecology: their definition, study and importance. Trends Ecol Evol 6:206–210. https://doi.org/10.1016/0169-5347(91)90023-Q
Strauss SY, Sahli H, Conner JK (2005) Toward a more trait-centered approach to diffuse (co) evolution. New Phytol. https://doi.org/10.1111/j.1469-8137.2004.01228.x
Svanbäck R, Bolnick DI (2005) Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol Ecol Res 7(7):993–1012
TerHorst CP, Zee PC, Heath KD, Miller TE, Pastore AI, Patel S, Schreiber SJ, Wade MJ, Walsh MR (2018) Evolution in a community context: trait responses to multiple species interactions. Am Nat 191:368–380. https://doi.org/10.1086/695835
Valverde J, Gómez JM, Perfectti F (2016) The temporal dimension in individual-based plant pollination networks. Oikos 125:468–479. https://doi.org/10.1111/oik.02661
Walsh MR (2013) The evolutionary consequences of indirect effects. Trends Ecol Evol 28:23–29. https://doi.org/10.1016/j.tree.2012.08.006
Wootton JT (1994) The nature and consequences of indirect effects in ecological communities. Annu Rev Ecol Evol Syst 25:443–466. https://doi.org/10.1146/annurev.es.25.110194.002303
Yamawo A, Suzuki N, Tagawa J (2021) Species diversity and biological trait function: effectiveness of ant–plant mutualism decreases as ant species diversity increases. Funct Ecol 35:2012–2025. https://doi.org/10.1111/1365-2435.13859
