Imprecise evidence in social learning
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bartashevich, P., & Mostaghim, S. (2021). Multi-featured collective perception with evidence theory: Tackling spatial correlations. Swarm Intelligence, 15(1–2), 83–110. https://doi.org/10.1007/s11721-021-00192-8
Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology. MIT Press.
Brambilla, M., Ferrante, E., Birattari, M., et al. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7, 1–41. https://doi.org/10.1007/s11721-012-0075-2
Cholvy, L. (2018). Opinion diffusion and influence: A logical approach. International Journal of Approximate Reasoning, 93, 24–39. https://doi.org/10.1016/j.ijar.2017.10.014
Couvillon, M. J., Phillipps, H. L., Schürch, R., et al. (2012). Working against gravity: Horizontal honeybee waggle runs have greater angular scatter than vertical waggle runs. Biology Letters, 8(4), 540–543. https://doi.org/10.1098/rsbl.2012.0182
Crosscombe, M., & Lawry, J. (2021). The impact of network connectivity on collective learning. In International symposium distributed autonomous robotic systems. Springer (pp. 82–94). https://doi.org/10.1007/978-3-030-92790-5_7
Crosscombe, M., Lawry, J., & Hauert, S., et al. (2017). Robust distributed decision-making in robot swarms: Exploiting a third truth state. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE (pp. 4326–4332). https://doi.org/10.1109/IROS.2017.8206297
Crosscombe, M., Lawry, J., & Bartashevich, P. (2019). Evidence propagation and consensus formation in noisy environments. In International conference on scalable uncertainty management. Springer (pp. 310–323). https://doi.org/10.1007/978-3-030-35514-2_23.
De Marco, R. J., Gurevitz, J. M., & Menzel, R. (2008). Variability in the encoding of spatial information by dancing bees. Journal of Experimental Biology, 211(10), 1635–1644. https://doi.org/10.1242/jeb.013425
Douven, I. (2019). Optimizing group learning: An evolutionary computing approach. Artificial Intelligence, 275, 235–251. https://doi.org/10.1016/j.artint.2019.06.002
Douven, I., & Kelp, C. (2011). Truth approximation, social epistemology, and opinion dynamics. Erkenntnis, 75(2), 271. https://doi.org/10.1007/s10670-011-9295-x
Dubois, D., & Prade, H. (1988). Representation and combination of uncertainty with belief functions and possibility measures. Computational Intelligence, 4(3), 244–264. https://doi.org/10.1111/j.1467-8640.1988.tb00279.x
Dubois, D., Liu, W., Ma, J., et al. (2016). The basic principles of uncertain information fusion. An organised review of merging rules in different representation frameworks. Information Fusion, 32, 12–39. https://doi.org/10.1016/j.inffus.2016.02.006
Dussutour, A., Beekman, M., Nicolis, S. C., et al. (2009). Noise improves collective decision-making by ants in dynamic environments. Proceedings of the Royal Society B: Biological Sciences, 276(1677), 4353–4361. https://doi.org/10.1098/rspb.2009.1235
Hegselmann, R., Krause, U., et al. (2006). Truth and cognitive division of labor: First steps towards a computer aided social epistemology. Journal of Artificial Societies and Social Simulation, 9(3), 10.
Heyes, C. M. (1994). Social learning in animals: Categories and mechanisms. Biological Reviews, 69(2), 207–231. https://doi.org/10.1111/j.1469-185X.1994.tb01506.x
Hintikka, J. (1962). Knowledge and belief. An introduction to the logic of the two notions. Ithaca: Cornell University Press.
Khaluf, Y. (2022). Robot swarms decide under perception errors in best-of-n problems. Applied Sciences, 12(6), 2975. https://doi.org/10.3390/app12062975
Lawry, J., & Lee, C. (2020). Probability pooling for dependent agents in collective learning. Artificial Intelligence, 288(103), 371. https://doi.org/10.1016/j.artint.2020.103371
Lawry, J., Crosscombe, M., & Harvey, D. (2019). Epistemic sets applied to best-of-n problems. In European conference on symbolic and quantitative approaches with uncertainty. Springer (pp. 301–312). https://doi.org/10.1007/978-3-030-29765-7_25.
Lee, C., Lawry, J., & Winfield, A. F. (2021). Negative updating applied to the best-of-n problem with noisy qualities. Swarm Intelligence. https://doi.org/10.1007/s11721-021-00188-4
Liu, Z., Crosscombe, M., & Lawry, J. (2021). Imprecise fusion operators for collective learning. In ALIFE 2021: The 2021 conference on artificial life. MIT Press. https://doi.org/10.1162/isal_a_00407.
Meyer, B., Ansorge, C., & Nakagaki, T. (2017). The role of noise in self-organized decision making by the true slime mold Physarum polycephalum. PLoS ONE 12(3):e0172,933. https://doi.org/10.1371/journal.pone.0172933.
Mondada, F., Bonani, M., & Raemy, X., et al. (2009). The e-puck, a robot designed for education in engineering. In Proceedings of the 9th conference on autonomous robot systems and competitions, vol 1. IPCB: Instituto Politécnico de Castelo Branco (pp. 59–65).
Okada, R., Ikeno, H., Kimura, T., et al. (2014). Error in the honeybee waggle dance improves foraging flexibility. Scientific Reports, 4(1), 1–9. https://doi.org/10.1038/srep04175
Osswald, C., & Martin, A. (2006). Understanding the large family of Dempster–Shafer theory’s fusion operators-a decision-based measure. In 2006 9th international conference on information fusion. IEEE (pp. 1–7). https://doi.org/10.1109/ICIF.2006.301631.
Parker, C., & Zhang, H. (2009). Cooperative decision-making in decentralized multiple-robot systems: The best-of-n problem. IEEE/ASME Transactions on Mechatronics, 14(2), 240–251. https://doi.org/10.1109/TMECH.2009.2014370
Preece, K., & Beekman, M. (2014). Honeybee waggle dance error: Adaption or constraint? Unravelling the complex dance language of honeybees. Animal Behaviour, 94, 19–26. https://doi.org/10.1016/j.anbehav.2014.05.016
Rausch, I., Nauta, J., & Simoens, P., et al. (2020a). Modeling the influence of social feedback on altruism using multi-agent systems. In The 2020 conference on artificial life. MIT Press (pp. 727–735). https://doi.org/10.1162/isal_a_00256.
Rausch, I., Simoens, P., & Khaluf, Y. (2020). Adaptive foraging in dynamic environments using scale-free interaction networks. Frontiers in Robotics and AI, 7, 86. https://doi.org/10.3389/frobt.2020.00086
Ruspini, E. H. (1987). Epistemic logics, probability, and the calculus of evidence. In Proceedings of the 10th international joint conference on Artificial intelligence Volume 2 (pp .924–931). https://doi.org/10.1007/978-3-540-44792-4_17.
Schwind, N., Inoue, K., Bourgne, G., et al. (2015). Belief revision games. Proceedings of the AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v29i1.9415
Talamali, M. S., Marshall, J. A., & Bose, T., et al. (2019). Improving collective decision accuracy via time-varying cross-inhibition. In 2019 International conference on robotics and automation (ICRA). IEEE (pp. 9652–9659). https://doi.org/10.1109/ICRA.2019.8794284.
Talamali, M. S., Saha, A., Marshall, J. A. R., et al. (2021). When less is more: Robot swarms adapt better to changes with constrained communication. Science Robotics, 6(56), 1416. https://doi.org/10.1126/scirobotics.abf1416
Tanner, D. A., & Visscher, K. (2006). Do honey bees tune error in their dances in nectar-foraging and house-hunting? Behavioral Ecology and Sociobiology, 59(4), 571–576. https://doi.org/10.1007/s00265-005-0082-z
Towne, W. F., & Gould, J. L. (1988). The spatial precision of the honey bees’ dance communication. Journal of Insect Behavior, 1(2), 129–155. https://doi.org/10.1007/BF01052234
Valentini, G., Hamann, H., & Dorigo, M., et al. (2014). Self-organized collective decision making: The weighted voter model. In AAMAS (pp. 45–52). https://doi.org/10.5555/2615731.2615742.
Valentini, G., Ferrante, E., Hamann, H., et al. (2016). Collective decision with 100 Kilobots: Speed versus accuracy in binary discrimination problems. Autonomous Agents and Multi-Agent Systems, 30(3), 553–580. https://doi.org/10.1007/s10458-015-9323-3
Valentini, G., Ferrante, E., & Dorigo, M. (2017). The best-of-n problem in robot swarms: Formalization, state of the art, and novel perspectives. Frontiers in Robotics and AI, 4, 9. https://doi.org/10.3389/frobt.2017.00009
Vardi, M. (1989). On the complexity of epistemic reasoning. In Proceedings. Fourth annual symposium on logic in computer science (pp. 243–244). https://doi.org/10.1109/LICS.1989.39179.
Weidenmüller, A., & Seeley, T. D. (1999). Imprecision in waggle dances of the honeybee (Apis mellifera) for nearby food sources: Error or adaptation? Behavioral Ecology and Sociobiology, 46(3), 190–199. https://doi.org/10.1007/s002650050609