Importancia del tracto gastrointestinal en la diabetes de tipo 2. La cirugía metabólica es más que incretinas
Tài liệu tham khảo
International Diabetes Federation. IDF Diabetes Atlas. 7.th Edition. 2015. Brussels, Belgium [consultado 22 Ene 2017]. Disponible en: http://www.idf.org/diabetesatlas
Ashcroft, 2012, Diabetes mellitus and the β cell: the last ten years, Cell., 148, 1160, 10.1016/j.cell.2012.02.010
Melvin, 2016, The gut as an endocrine organ: Role in the regulation of food intake and body weight, Curr Atheroscler Rep., 18, 49, 10.1007/s11883-016-0599-9
Seeley, 2015, The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes, Cell Metab., 21, 369, 10.1016/j.cmet.2015.01.001
Vidal, 2013, Diabetes remission following metabolic surgery: Is GLP-1 the Culprit?, Curr Atheroscler Rep, 15, 1, 10.1007/s11883-013-0357-1
Ye, 2014, GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents, Am J Physiol Regul Integr Comp Physiol., 306, R352, 10.1152/ajpregu.00491.2013
Habener, 2017, Pancreas and not gut mediates the GLP-1 induced glucoincretin effect, Cell Metab., 25, 757, 10.1016/j.cmet.2017.03.020
Rubino, 2004, Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease, Ann Surg., 239, 1, 10.1097/01.sla.0000102989.54824.fc
Rubino, 2006, The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes, Ann Surg., 244, 741, 10.1097/01.sla.0000224726.61448.1b
Salinari, 2017, Down-regulation of insulin sensitivity after oral glucose administration: Evidence for the “anti-incretin effect”, Diabetes., 66, 2756, 10.2337/db17-0234
Duca, 2015, Glucoregulatory relevance of small intestinal nutrient sensing in physiology. Bariatric Surgery, and Pharmacology, Cell Metab., 22, 367, 10.1016/j.cmet.2015.07.003
Patel, 2018, EndoBarrier®: a safe and effective novel treatment for obesity and type 2 diabetes?, Obes Surg., 28, 1980, 10.1007/s11695-018-3123-1
Salinari, 2014, Duodenal-jejunal bypass and jejunectomy improve insulin sensitivity in Goto-Kakizaki diabetic rats without changes in incretins or insulin secretion, Diabetes., 63, 1069, 10.2337/db13-0856
Kwon, 2014, The foregut theory as a possible mechanism of action for the remission of type 2 diabetes in low body mass index patients undergoing subtotal gastrectomy for gastric cancer, Surg Obes Relat Dis, 10, 235, 10.1016/j.soard.2013.09.013
Pacheco, 2007, The effects of duodenal-jejunal exclusion on hormonal regulation of glucose metabolism in Goto-Kakizaki rats, Am J Surg., 194, 221, 10.1016/j.amjsurg.2006.11.015
Zubiaga, 2016, The effects of one-anastomosis gastric bypass on glucose metabolism in goto-kakizaki rats, Obes Surg., 26, 2622, 10.1007/s11695-016-2138-8
Goncalves, 2015, Bile routing modification reproduces key features of gastric bypass in rat, Ann Surg., 262, 1006, 10.1097/SLA.0000000000001121
Kohli, 2013, Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids, J Clin Endocrinol Metab., 98, 10.1210/jc.2012-3736
Kohli, 2013, A surgical model in male obese rats uncovers protective effects of bile acids post-bariatric surgery, Endocrinology., 154, 2241, 10.1210/en.2012-2069
Pournaras, 2013, Are bile acids the new gut hormones? Lessons from weight loss surgery models, Endocrinology., 154, 2255, 10.1210/en.2013-1383
Duboc, 2014, The bile acid TGR5 membrane receptor: from basic research to clinical application, Dig Liver Dis., 46, 302, 10.1016/j.dld.2013.10.021
Wu, 2013, Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans, Diabetes Obes Metab., 15, 474, 10.1111/dom.12043
Nightingale, 2016, Small bowel and nutrition Committee of the British Society of Gastroenterology. Guidelines for management of patients with a short bowel, Gut, 55
Baud, 2016, Bile diversion in roux-en-Y gastric bypass modulates sodium-dependent glucose intestinal uptake, Cell Metab., 23, 547, 10.1016/j.cmet.2016.01.018
Song, 2016, Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus, Expert Opin Ther Targets., 20, 1109, 10.1517/14728222.2016.1168808
Shyangdan, 2016, SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis, BMJ Open, 6, e009417, 10.1136/bmjopen-2015-009417
Wu, 2016, Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis, Lancet Diabetes Endocrinol, 4, 411, 10.1016/S2213-8587(16)00052-8
Baud, 2016, Sodium glucose transport modulation in type 2 diabetes and gastric bypass surgery, Surg Obes Relat Dis., 12, 1206, 10.1016/j.soard.2016.04.022
Takebayashi, 2017, Effect of sodium glucose cotransporter 2 inhibitors with low SGLT2/SGLT1 selectivity on circulating glucagon-like peptide 1 levels in type 2 diabetes mellitus, J Clin Med Res., 9, 745, 10.14740/jocmr3112w
Han, 2014, Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective, World J Gastroenterol.;, 20, 17737, 10.3748/wjg.v20.i47.17737
Cox, 2015, Obesity, inflammation, and the gut microbiota, Lancet Diabetes Endocrinol., 3, 207, 10.1016/S2213-8587(14)70134-2
Kreznar, 2017, Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes, Cell Rep., 18, 1739, 10.1016/j.celrep.2017.01.062
Barja-Fernández, 2015, Peripheral signals mediate the beneficial effects of gastric surgery in obesity, Gastroenterol Res Pract., 2015, 560938, 10.1155/2015/560938
Aron-Wisnewsky, 2012, The importance of the gut microbiota after bariatric surgery, Nat Rev Gastroenterol Hepatol., 9, 590, 10.1038/nrgastro.2012.161
Zhang, 2016, Duodenal-jejunal bypass preferentially elevates serum taurine-conjugated bile acids and alters gut microbiota in a diabetic rat model, Obes Surg., 26, 1890, 10.1007/s11695-015-2031-x
Cani, 2016, Gut microbiota: Changes in gut microbes and host metabolism: squaring the circle?, Nat Rev Gastroenterol Hepatol., 13, 563, 10.1038/nrgastro.2016.135
De Kort, 2011, Leaky gut and diabetes mellitus: what is the link?, Obes Rev., 12, 449, 10.1111/j.1467-789X.2010.00845.x
Membrez, 2008, Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice, The FASEB Journal, 22, 2416, 10.1096/fj.07-102723
Guinane, 2013, Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ, Therap Adv Gastroenterol., 6, 295, 10.1177/1756283X13482996
Cani, 2017, Next-generation beneficial microbes: The case of akkermansia muciniphila, Front Microbiol., 8, 1765, 10.3389/fmicb.2017.01765
Schneeberger, 2015, Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice, Sci Rep., 5, 16643, 10.1038/srep16643
Yan, 2016, Effect of Roux-en-Y gastric bypass surgery on intestinal Akkermansia muciniphila, World J Gastrointest Surg., 8, 301, 10.4240/wjgs.v8.i4.301
Bell, 2015, Changes seen in gut bacteria content and distribution with obesity: causation or association?, Postgrad Med., 127, 863, 10.1080/00325481.2015.1098519
Penhoat, 2014, Intestinal gluconeogenesis is crucial to maintain a physiological fasting glycemia in the absence of hepatic glucose production in mice, Metabolism., 63, 104, 10.1016/j.metabol.2013.09.005
Troy, 2008, Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice, Cell Metabolism., 8, 201, 10.1016/j.cmet.2008.08.008
Yan, 2016, Roux-en-Y gastric bypass surgery suppresses hepatic gluconeogenesis and increases intestinal gluconeogenesis in a T2DM Rat Model, Obes Surg., 26, 2683, 10.1007/s11695-016-2157-5
Battezzati, 2004, Nonhepatic glucose production in humans, Am J Physiol Endocrinol Metab., 286, E129, 10.1152/ajpendo.00486.2002
Warner, 2016, The pathogenesis of resection-associated intestinal adaptation, Cell Mol Gastroenterol Hepatol., 2, 429, 10.1016/j.jcmgh.2016.05.001
Ryan, 2013, Physiology. Food as a hormone. Science, 339, 918
Habegger, 2014, Duodenal nutrient exclusion improves metabolic syndrome and stimulates villus hyperplasia, Gut., 63, 1238, 10.1136/gutjnl-2013-304583
Saeidi, 2013, Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass, Science., 341, 406, 10.1126/science.1235103
Cavin, 2017, Intestinal adaptations after bariatric surgery: Consequences on glucose homeostasis, Trends Endocrinol Metab., 28, 354, 10.1016/j.tem.2017.01.002
Cavin, 2016, Differences in alimentary glucose absorption and intestinal disposal of blood glucose after roux-en-y gastric bypass vs sleeve gastrectomy, Gastroenterology., 150, 454, 10.1053/j.gastro.2015.10.009
Lauti, 2016, Weight regain following sleeve gastrectomy-a systematic review, Obes Surg., 26, 1326, 10.1007/s11695-016-2152-x
Liu, 2002, Intake of refined carbohydrates and whole grain foods in relation to risk of type 2 diabetes mellitus and coronary heart disease, J Am Coll Nutr, 21, 298, 10.1080/07315724.2002.10719227
Moss, 2007, Gastrointestinal monitor: automatic titration of jejunal inflow to match peristaltic outflow, J Surg Res., 140, 184, 10.1016/j.jss.2006.12.545
Müller, 2018, Gastrointestinal transit time. Glucose homeostasis and metabolic health: Modulation by dietary fibers, Nutrients., 10
Dirksen, 2013, Fast pouch emptying, delayed small intestinal transit, and exaggerated gut hormone responses after Roux-en-Y gastric bypass, Neurogastroenterol Motil., 25, 10.1111/nmo.12087
Nguyen, 2014, Rapid gastric and intestinal transit is a major determinant of changes in blood glucose, intestinal hormones, glucose absorption and postprandial symptoms after gastric bypass, Obesity., 22, 2003, 10.1002/oby.20791
Nguyen, 2015, Effects of posture and meal volume on gastric emptying, intestinal transit, oral glucose tolerance. blood pressure and gastrointestinal symptoms after roux-en-Y gastric bypass, Obes Surg., 25, 1392, 10.1007/s11695-014-1531-4