Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tầm Quan Trọng của Cơ Chế Ức Chế Vi Khuẩn Đối Với Hiệu Ứng Warburg Trong Các Tế Bào Ung Thư Ruột Kết
Tóm tắt
Ung thư đại trực tràng (CRC) là loại ung thư phổ biến thứ ba trên thế giới. Các yếu tố di truyền, lối sống và chế độ ăn uống đóng vai trò quan trọng trong nguy cơ mắc CRC. Vi khuẩn đường ruột của con người ảnh hưởng đến nhiều đặc điểm sinh lý học của con người như chuyển hóa, hấp thụ dinh dưỡng và chức năng miễn dịch. Sự mất cân bằng của vi khuẩn đã được liên kết với nhiều rối loạn bao gồm cả CRC. Có vẻ như giả thuyết hiệu ứng Warburg tương ứng với giai đoạn đầu của sự khởi phát ung thư do sự thất bại trong tổng hợp phức hợp pyruvate dehydrogenase kết hợp với sự cung cấp glucose trong chế độ ăn giàu carbohydrate. Từ những nghiên cứu giữa các công trình đã công bố trước đó, chúng tôi đã cố gắng làm rõ tầm quan trọng của hiệu ứng Warburg trong các khối u; nó cũng thảo luận về các cơ chế của probiotic trong việc ức chế sự tiến triển của khối u và đảo ngược hiệu ứng Warburg của probiotic trong việc điều chỉnh vi khuẩn và điều trị CRC. Những tác động này đã được quan sát trong một số thử nghiệm lâm sàng, việc áp dụng probiotic như một tác nhân điều trị chống lại CRC vẫn cần điều tra thêm. Chất xơ được lên men bởi vi khuẩn kết tràng thành SCFAs như butyrate/acetate, có thể đóng một vai trò quan trọng trong sự cân bằng bình thường bằng cách thúc đẩy chu trình tế bào biểu mô kết tràng. Butyrate vào nhân tế bào và hoạt động như một chất ức chế histone deacetylase (HDACi). Bởi vì các tế bào ung thư đại tràng thực hiện con đường hiệu ứng Warburg, nguồn năng lượng ưa thích của chúng là glucose thay vì butyrate. Do đó, sự tích lũy của nồng độ butyrate vừa phải trong các tế bào ung thư đại tràng và vai trò của nó như là HDACi. Probiotic đã được chứng minh là đóng vai trò bảo vệ chống lại sự phát triển của ung thư bằng cách điều chỉnh vi khuẩn đường ruột và phản ứng miễn dịch.
Từ khóa
#Ung thư đại trực tràng #hiệu ứng Warburg #vi khuẩn đường ruột #probiotic #SCFATài liệu tham khảo
Rutkowski DT, Hegde RS. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J Cell Biol. 2010;189(5):783–94.
Liemburg-Apers DC, et al. Quantitative glucose and ATP sensing in mammalian cells. Pharm Res. 2011;28(11):2745.
Winkler BS, Arnold MJ, Brassell MA, Sliter DR. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Invest Ophthalmol Vis Sci. 1997;38(1):62–71.
Pike LS, et al. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta (BBA)-Bioenergenet. 2011;1807(6):726–34.
Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol. 2000;20(19):7311–8.
Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science. 2005;309(5736):943–7.
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.
Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325.
Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21(3):297–308.
Vazquez A, et al. Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited. BMC Syst Biol. 2010;4(1):58.
Haber RS, Rathan A, Weiser KR, Pritsker A, Itzkowitz SH, Bodian C, et al. GLUT1 glucose transporter expression in colorectal carcinoma: a marker for poor prognosis. Cancer. 1998;83(1):34–40.
Ferreira LM. Cancer metabolism: the Warburg effect today. Exp Mol Pathol. 2010;89(3):372–80.
Mathupala SP, Ko YH, Pedersen PL. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta (BBA)-Bioenergenet. 2010;1797(6-7):1225–30.
Chiche J, Brahimi-Horn MC, Pouysségur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med. 2010;14(4):771–94.
Puglisi MA, Tesori V, Lattanzi W, Gasbarrini GB, Gasbarrini A. Colon cancer stem cells: controversies and perspectives. World J Gastroenterol. 2013;19(20):2997–3006.
Kim J-w, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66(18):8927–30.
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.
Markowitz SD, Bertagnolli MM. Molecular basis of colorectal cancer. N Engl J Med. 2009;361(25):2449–60.
Haas P, et al. Effectiveness of whole grain consumption in the prevention of colorectal cancer: Meta-analysis of cohort studies. Int J Food Sci Nutr. 2009;60(sup6):1–13.
Donovan MG, et al. Mediterranean diet: prevention of colorectal cancer. Front Nutri. 2017;4:59.
Aune D, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. Bmj. 2011;343:d6617.
Yousefi B, Eslami M, Ghasemian A, Kokhaei P, Salek Farrokhi A, Darabi N. Probiotics importance and their immunomodulatory properties. J Cell Physiol. 2019;234(6):8008–18.
Eslami M, et al. Are probiotics useful for therapy of Helicobacter pylori diseases? Comp Immunol Microbiol Infect Dis. 2019;64:99–108.
Salek Farrokhi A, et al. Is it true that gut microbiota is considered as panacea in cancer therapy? J Cell Physiol. 2019;234(9):14941–50.
Kobyliak N, et al. Probiotics for experimental obesity prevention: focus on strain dependence and viability of composition. Endokrynologia Polska. 2017;68(6):659–67.
Kobyliak N, Abenavoli L, Falalyeyeva T, Beregova T. Efficacy of probiotics and smectite in rats with non-alcoholic fatty liver disease. Ann Hepatol. 2018;17(1):153–61.
Kobyliak N, Falalyeyeva T, Bodnar P, Beregova T. Probiotics supplemented with omega-3 fatty acids are more effective for hepatic steatosis reduction in an animal model of obesity. Probiot Antimicrobial Proteins. 2017;9(2):123–30.
Eslami M, et al. Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol. 2019.
Yousefi, B., et al. Probiotics can really cure an autoimmune disease? Gene Reports, 2019: p. 100364.
Ghasemian A, et al. Probiotics and their increasing importance in human health and infection control. Rev Med Microbiol. 2018;29(4):153–8.
Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932.
Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver R, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91(10):3527–61.
Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4(7):551–61.
Bergers G, Benjamin LE. Angiogenesis: tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–10.
Guarani V, et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature. 2011;473(7346):234.
Ouyang W, et al. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity. 2009;30(3):358–71.
Milisav I, Poljšak B, Ribarič S. Reduced risk of apoptosis: mechanisms of stress responses. Apoptosis. 2017;22(2):265–83.
Park HW, et al. Alternative Wnt signaling activates YAP/TAZ. Cell. 2015;162(4):780–94.
Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13(6):472–82.
Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.
Yuan J, Glazer PM. Mutagenesis induced by the tumor microenvironment. Mutation Res/Fund Mol Mech Mutagen. 1998;400(1-2):439–46.
Goda N, Kanai M. Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol. 2012;95(5):457–63.
Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011;10(9):671–84.
Makeeva EN, Makeev AM, Rodziller ID. Metabolism of monocarbon compounds during biological purification of sewage waters. Prikl Biokhim Mikrobiol. 1975;11(3):367–73.
Clare CE, et al. One-carbon metabolism: linking nutritional biochemistry to epigenetic programming of long-term development. Ann Rev Anim Biosci. 2019;7(1):263–87.
Chabner BA, Roberts TG Jr. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1):65–72.
Innocenti F, Ratain M. Update on pharmacogenetics in cancer chemotherapy. Eur J Cancer. 2002;38(5):639–44.
Schirch V, Szebenyi DM. Serine hydroxymethyltransferase revisited. Curr Opin Chem Biol. 2005;9(5):482–7.
Yablokov VY, et al. Studies of the rates of thermal decomposition of glycine, alanine, and serine. Russ J Gen Chem. 2009;79(8):1704–6.
Amelio I, et al. Serine and glycine metabolism in cancer. Trends Biochem Sci. 2014;39(4):191–8.
Rosenzweig A, Blenis J, Gomes AP. Beyond the Warburg effect: how do cancer cells regulate one-carbon metabolism? Front Cell Dev Biol. 2018;6:90.
Newsholme P, Procopio J, Lima MM, Pithon-Curi TC, Curi R. Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochem Funct. 2003;21(1):1–9.
Newsholme P, Lima MM, Procopio J, Pithon-Curi TC, Doi SQ, Bazotte RB, et al. Glutamine and glutamate as vital metabolites. Braz J Med Biol Res. 2003;36(2):153–63.
Mantovani A, et al. Cancer-related inflammation. Nature. 2008;454(7203):436.
Innocenti F, Iyer L, Ratain MJ. Pharmacogenomics of chemotherapeutic agents in cancer treatment. In: Licinio W, editor. Pharmacogenomics: the Search for Individualized Therapies. Weinheim: Wiley-VCH Verlag GmbH; 2002.
Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 2013;493(7433):542–6.
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.
O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–65.
Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38(4):633–43.
Kelly B, O'neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25(7):771–84.
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.
Chang C-H, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013;153(6):1239–51.
Brand A, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24(5):657–71.
Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.
Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19(5):698–711.
Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69(1):52–60.
Comerford SA, Huang Z, du X, Wang Y, Cai L, Witkiewicz AK, et al. Acetate dependence of tumors. Cell. 2014;159(7):1591–602.
Gonçalves P, Martel F. Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab. 2013;14(9):994–1008.
Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013;12(11):829–46.
Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 2012;48(4):612–26.
Forte A, de Sanctis R, Leonetti G, Manfredelli S, Urbano V, Bezzi M. Dietary chemoprevention of colorectal cancer. Ann Ital Chir. 2008;79(4):261–7.
Kennedy KM, Dewhirst MW. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 2010;6(1):127–48.
Encarnação J, et al. Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment. Cancer Metastasis Rev. 2015;34(3):465–78.
Garcia-Ramirez M, Rocchini C, Ausio J. Modulation of chromatin folding by histone acetylation. J Biol Chem. 1995;270(30):17923–8.
Medina V, Edmonds B, Young GP, James R, Appleton S, Zalewski PD. Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res. 1997;57(17):3697–707.
Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6(1):38–51.
Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol-Gastrointest Liver Physiol. 2004;287(1):G7–G17.
Wächtershäuser A, Stein J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr. 2000;39(4):164–71.
Kaisar MM, et al. Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling. Front Immunol. 2017;8:1429.
Walker AW, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11(1):7.
Greenhalgh K, Meyer KM, Aagaard KM, Wilmes P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ Microbiol. 2016;18(7):2103–16.
Donohoe DR, Curry KP, Bultman SJ. Microbial oncotarget: bacterial-produced butyrate, chemoprevention and Warburg effect. Oncotarget. 2013;4(2):182.
den Besten G, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.
Bultman SJ. Molecular pathways: gene–environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin Cancer Res. 2014;20(4):799–803.
Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. The role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19.
Monneret C. Histone deacetylase inhibitors. Eur J Med Chem. 2005;40(1):1–13.
Canani RB, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics. 2012;4(1):4.
Yagi A, Yu BP. Immune modulation by microbiota sources: effects of aloe vera gel and butyrate. J Gastroenterol Hepatol Res. 2018;7(5):2681–9.