Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure
Tóm tắt
Từ khóa
Tài liệu tham khảo
Julius S, Jamerson K . Sympathetics, insulin resistance and coronary risk in hypertension: the chicken-and-egg question. J Hypertens 1994; 12: 495–502.
Esler M, Lambert G, Brunner-La Rocca HP, Vaddadi G, Kaye D . Sympathetic nerve activity and neurotransmitter release in humans: translation from pathophysiology into clinical practice. Acta Physiol Scand 2003; 177: 275–284.
Esler M . The 2009 Carl Ludwig Lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol 2010; 108: 227–237.
Lucini D, Mella GS, Malliani A, Pagani M . Impairment in cardiac autonomic regulation preceding arterial hypertension in humans. Insights from spectral analysis of beat-by-beat cardiovascular vaiability. Circulation 2002; 106: 2673–2679.
Malpas SC . Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev 2010; 90: 513–557.
Kumagai H, Onami T, Takimoto C, Iigaya K, Imai M, Matsuura T, Sakata K, Oshima N, Hayashi K, Saruta T . Involvement of renal sympathetic nerve in pathogenesis of hypertension. Kidney and blood pressure regulation. Contrib Nephrol 2004; 143: 32–45.
Kumagai H, Oshima N, Matsuura T, Imai M, Iigaya K, Onimaru H, Kawai A, Sakata K, Onami T, Takimoto C, Kamayachi T, Osaka M, Hayashi K, Itoh H, Saruta T . Whole-cell patch-clamp and optical imaging of neurons in the RVLM, the CVLM, and the caudal end of VLM. In: Kubo T, Kuwaki T (eds). Central Mechanisms of Cardiovascular Regulation 2007. Transworld Research Network, Kerala, India, 2007 pp. 83–106.
Pilowsky PM, Goodchild AK . Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens 2002; 20: 1675–1688.
Sved AF, Ito S, Madden CJ . Baroreflex dependent and independent roles of the caudal ventrolateral medulla in cardiovascular regulation. Brain Res Bull 2000; 15: 129–133.
Mandel DA, Schreihofer AM . Glutamatergic inputs to the CVLM independent of the NTS promote tonic inhibition of sympathetic vasomotor tone in rats. Am J Physiol Heart Circ Physiol 2008; 295: H1772–H1779.
Mandel DA, Schreihofer AM . Modulation of the sympathetic response to acute hypoxia by the caudal ventrolateral medulla in rats. J Physiol 2009; 587: 461–475.
Schreihofer AM, Guyenet PG . The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol 2002; 29: 514–521.
Schreihofer AM, Guyenet PG . Baro-activated neurons with pulse-modulated activity in the rat caudal ventrolateral medulla express GAD67 mRNA. J Neurophysiol 2003; 89: 1265–1277.
Kumagai H, Suzuki H, Ryuzaki M, Matsukawa S, Saruta T . Baroreflex control of renal sympathetic nerve activity is potentiated in early phase of two-kidney, one clip Goldblatt hypertension in conscious rabbits. Circ Res 1990; 67: 1309–1322.
Kumagai H, Averill DB, Khosla MC, Ferrario CM . Role of nitric oxide and angiotensin II in the regulation of sympathetic nerve activity in spontaneously hypertensive rats. Hypertension 1993; 21: 476–484.
Nishizawa M, Kumagai H, Ichikawa M, Oshima N, Suzuki H, Saruta T . Improvement in baroreflex function by an oral angiotensin receptor antagonist in rats with myocardial infarction. Hypertension 1997; 29 (Part 2): 458–463.
Muratani H, Averill DB, Ferrario CM . Effect of angiotensin II in ventrolateral medulla of spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 1991; 260: R977–R984.
Li YW, Guyenet PG . Angiotensin II decreases a resting K+ conductance in rat bulbospinal neurons of the C1 area. Circ Res 1996; 78: 274–282.
Lin HH, Wu SY, Lai CC, Dun NJ . GABA- and glycine-mediated inhibitory postsynaptic potentials in neonatal rat rostral ventrolateral medulla neurons in vitro. Neuroscience 1998; 82: 429–442.
Oshima N, Kumagai H, Kawai A, Sakata K, Matsuura T, Saruta T . Three types of putative presympathetic neurons in the rostral ventrolateral medulla studied with rat brainstem-spinal cord preparation. Auton Neurosci 2000; 84: 40–49.
Matsuura T, Kumagai H, Kawai A, Onimaru H, Imai M, Oshima N, Sakata K, Saruta T . Rostral ventrolateral medulla neurons of neonatal Wistar-Kyoto and spontaneously hypertensive rats. Hypertension 2002; 40: 560–565.
Matsuura T, Kumagai H, Onimaru H, Kawai A, Iigaya K, Onami T, Sakata K, Oshima N, Sugaya T, Saruta T . Electrophysiological properties of rostral ventrolateral medulla neurons in angiotensin II 1a receptor knockout mice. Hypertension 2005; 46: 349–354.
Zucker IH, Schultz HD, Patel KP, Wang W, Gao L . Regulation of central angiotensin type 1 receptors and sympathetic outflow in heart failure. Am J Physiol Heart Circ Physiol 2009; 297: H1557–H1566.
DiBona GF, Jones SY . Sodium intake influences hemodynamic and neural responses to angiotensin receptor blockade in rostral ventrolateral medulla. Hypertension 2001; 37: 1114–1123.
Tsuchihashi T, Kagiyama S, Matsumura K, Abe I, Fujishima M . Effects of chronic oral treatment with imidapril and TCV-116 on the responsiveness to angiotensin II in ventrolateral medulla of SHR. J Hypertens 1999; 17: 917–922.
Sumners C, Zhu M, Gelband CH, Posner P . Angiotensin II type 1 receptor modulation of neuronal K+ and Ca2+ currents: intracellular mechanisms. Am J Physiol Cell Physiol 1996; 271: C154–C163.
Sumners C, Fleegal MA, Zhu M . Angiotensin AT1 receptor signaling pathways in neurons. Clin Exp Pharmacol Physiol 2002; 29: 483–490.
Brooks VL, Osborn JW . Hormonal-sympathetic interactions in long-term regulation of arterial pressure: an hypothesis. Am J Physiol Regul Integr Comp Physiol 1995; 268: R1343–R1358.
Brooks VL, Haywood JR, Johnson AK . Translation of salt retention to central activation of the sympathetic nervous system in hypertension. Clin Exp Pharmacol Physiol 2005; 32: 426–432.
Zhang Z-H, Francis J, Weiss RM, Felder RB . The renin-angiotensin-aldosterone system excites hypothalamic paraventricular nucleus neurons in heart failure. Am J Physiol Heart Circ Physiol 2002; 283: H423–H433.
Dupont AG, Brouwers S . Brain angiotensin peptides regulate sympathetic tone and blood pressure. J Hypertens 2010; 28: 1599–1610.
Toney GM, Cato CMJ, Stocker SD . Central osmotic regulation of sympathetic nerve activity. Acta Physiol Scand 2003; 177: 43–55.
Chen QH, Toney GM . AT1-receptor blockade in the hypothalamic PVN reduces central hyperosmolality-induced renal sympathoexcitation. Am J Physiol Regul Integr Comp Physiol 2001; 281: R1844–R1853.
McKinley MJ, Johnson AK . The physiological regulation of thirst and fluid intake. News in Physiol Sci 2004; 19: 1–6.
Hirooka Y . Oxidative stress in the cardiovascular center has a pivotal role in the sympathetic activation in hypertension. Hypertens Res 2011; 34: 407–412.
Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A . Increased reactive oxygen species in rostral ventrolateral medulla contributes to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation 2004; 109: 2357–2362.
Dai X, Cao X, Kreulen DL . Superoxide anion is elevated in sympathetic neurons in DOCA-salt hypertension via activation of NADPH oxidase. Am J Physiol Heart Circ Physiol 2006; 290: H1019–H1026.
Oliveira-Sales EB, Nishi EE, Carillo BA, Dolnikoff MS, Bergamaschi CT, Campos RR . Oxidative stress in the sympathetic premotor neurons contribute to sympathetic activation in renovascular hypertension. Am J Hypertens 2009; 22: 484–492.
Nozoe M, Hirooka Y, Koga Y, Araki S, Konno S, Kishi T, Ide T, Sunagawa K . Mitochondria-derived reactive oxygen species mediate sympathoexcitation induced by angiotensin II in the rostral ventrolateral medulla. J Hypertens 2008; 26: 2176–2184.
Oliveira-Sales EB, Colombari DSA, Davisson RL, Kasparov S, Hirata AE, Campos RR, Paton JFR . Kidney-induced hypertension depends on superoxide signaling in the rostral ventrolateral medulla. Hypertension 2010; 56: 290–296.
Kishi T, Hirooka Y, Ito K, Sakai K, Shimokawa H, Takeshita A . Cardiovascular effects of overexpression of endothelial nitric oxide synthase in the rostral ventrolateral medulla in stroke-prone spontaneously hypertensive rats. Hypertension 2002; 39: 264–268.
Kumagai H, Suzuki H, Ichikawa M, Nishizawa M, Oshima N, Saruta T . Interaction between endothelin and nitric oxide in sympathetic nerve modulation of hypertensive rats. Hypertens Res 1997; 20: 35–42.
Kimura Y, Hirooka Y, Sagara Y, Ito K, Kishi T, Shimokawa H, Takeshita A, Sunagawa K . Overexpression of inducible nitric oxide synthase in rostral ventrolateral medulla causes hypertension and sympathoexcitation via an increase in oxidative stress. Circ Res 2005; 96: 252–260.
Kumada M, Cao W, Kuwaki T . Effect of endothelin on vasomotor and respiratory neurons in the rostral ventrolateral medulla in rats. Cell Mol Neurobiol 2003; 23: 691–707.
Dampney RAL, Horiuchi J, Killinger S, Sheriff MJ, Tan PSP, McDowall LM . Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharmacol Physiol 2005; 32: 419–442.
Paton JFR . The ventral medullary respiratory network of the mature mouse studied in a working heart-brainstem preparation. J Physiol 1996; 493: 819–831.
Iigaya K, Horiuchi J, McDowall LM, Dampney RAL . Topographical specificity of regulation of respiratory and renal sympathetic activity by the midbrain dorsolateral periaqueductal gray. Am J Physiol Regul Integr Comp Physiol 2010; 299: R853–R861.
Mashimo T, Nabika T, Matsumoto C, Tamada T, Ueno K, Sawamura M, Ikeda K, Kato N, Nara T, Yamori Y . Aging and salt-loading modulate blood pressure QTLs in rats. Am J Hypertens 1999; 12: 1098–1104.
Kato N, Mashimo T, Nabika T, Cui ZH, Ikeda K, Yamori Y . Genome-wide searches for blood pressure quantitative trait loci in the stroke-prone spontaneously hypertensive rat of a Japanese colony. J Hypertens 2003; 21: 295–303.
Kato N, Nabika T, Liang Y-Q, Mashimo T, Inomata H, Watanabe T, Yanai K, Yamori Y, Yazaki Y, Sasazuki T . Isolation of a chromosome 1 region affecting blood pressure and vascular disease traits in the stroke-prone rat model. Hypertension 2003; 42: 1191–1197.
Nabika T, Kobayashi Y, Yamori Y . Congenic rats for hypertension: how useful are they for the hunting of hypertension genes? Clin Exp Pharmacol Physiol 2000; 27: 251–256.
Wang T, Nabika T, Notsu Y, Takabatake T . Sympathetic regulation of the renal functions in rats reciprocally congenic for chromosome 1 blood pressure quantitative trait locus. Hypertens Res 2008; 31: 561–568.
Cui ZH, Ikeda K, Kawakami K, Gonda T, Masuda J, Nabika T . Exaggerated response to cold stress in a congenic strain for the quantitative trait locus for blood pressure. J Hypertens 2004; 22: 2103–2109.
Iigaya K, Kumagai H, Nabika T, Harada Y, Onimaru H, Oshima N, Takimoto C, Kamayachi T, Saruta T, Itoh H . Relation of blood pressure quantitative trait locus on rat chromosome 1 to hyperactivity of rostral ventrolateral medulla. Hypertension 2009; 53: 42–48.
Yamazato M, Ohya Y, Nakamoto M, Sakima A, Tagawa T, Harada Y, Nabika T, Takishita S . Sympathetic hyperreactivity to air-jet stress in the chromosome 1 blood pressure quantitative trait locus congenic rats. Am J Physiol Regul Integr Comp Physiol 2006; 290: R709–R714.
Strack AM, Sawyer WB, Hughes JH, Platt KB, Loewy AD . A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res 1989; 491: 156–162.
Jansen AS, Wessendorf MW, Loewy AD . Transneuronal labeling of CNS neuropeptide and monoamine neurons after pseudorabies virus injections into the stellate ganglion. Brain Res 1995; 683: 1–24.
Matsumoto M, Takayama K, Miura M . Distribution of glutamate- and GABA-immunoreactive neurons projecting to the vasomotor center of the intermediolateral nucleus of the lower thoracic cord of Wistar rats: a double-labeling study. Neurosci Lett 1994; 174: 165–168.
Iigaya K, Kumagai H, Onimaru H, Kawai A, Oshima N, Takimoto C, Kamayachi T, Hayashi K, Saruta T, Itoh H . Novel axonal projection from the caudal end of the ventrolateral medulla to the intermediolateral cell column. Am J Physiol Regul Integr Comp Physiol 2007; 292: R927–R936.
Onimaru H, Homma I . A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 2003; 23: 1478–1486.
Pilowsky P, Llewellyn-Smith IJ, Arnolda L, Inson J, Chalmers J . Intracellular recording from sympathetic preganglionic neurons in cat lumbar spinal cord. Brain Res 1994; 656: 319–328.
Natarajan M, Morrison SF . Sympathoexcitatory CVLM neurons mediate responses to caudal pressor area stimulation. Am J Physiol Regul Integr Comp Physiol 2000; 279: R364–R374.
Sun W, Panneton WM . The caudal pressor area of the rat: its precise location and projections to the ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol 2002; 283: R768–R778.
Seyedabadi M, Li Q, Padley JR, Pilowsky PM, Goodchild AK . A novel pressor area at the medullo-cervical junction that is not dependent on the RVLM: efferent pathways and chemical mediators. J Neurosci 2006; 26: 5420–5427.
Oshima N, Kumagai H, Onimaru H, Kawai A, Pilowsky PM, Iigaya K, Takimoto C, Hayashi K, Saruta T, Itoh H . Monosynaptic excitatory connection from the rostral ventrolateral medulla to sympathetic preganglionic neurons revealed by simultaneous recordings. Hypertens Res 2008; 31: 1445–1454.
Goldberger AL . Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 1996; 347: 1312–1314.
Huikuri HV, Makikallio TH, Peng CK, Goldberger AL, Hintze U, Moller M . Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 2000; 101: 47–53.
Skinner JE, Pratt CM, Vybiral T . A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am Heart J 1993; 125: 731–743.
Sakata K, Kumagai H, Osaka M, Onami T, Matsuura T, Imai M, Saruta T . Potentiated sympathetic nervous and renin-angiotensin systems reduce nonlinear correlation between sympathetic activity and blood pressure in conscious spontaneously hypertensive rats. Circulation 2002; 106: 620–625.
Osaka M, Yambe T, Saitoh H, Yoshizawa M, Itoh T, Nitta S, Hayakawa H . Mutual information discloses relationship between hemodynamic variables in artificial heart-implanted dogs. Am J Physiol Heart Circ Physiol 1999; 275: H1419–H1433.
Guild S-H, Austin PC, Navakatikyan M, Ringwood JV, Malpas S . Dynamic relationship between sympathetic nerve activity and renal blood flow: a frequency domain approach. Am J Physiol Regul Integr Comp Physiol 2001; 281: R206–R212.
Takimoto C, Kumagai H, Osaka M, Sakata K, Onami T, Kamayachi T, Iigaya K, Hayashi K, Saruta T, Itoh H . Candesartan and insulin reduce renal sympathetic nerve activity in hypertensive type 1 diabetic rats. Hypertens Res 2008; 31: 1941–1951.
Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M . Effects of candesartan on cardiac sympathetic nerve activity in patients with congestive heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol 2005; 45: 661–667.
Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M . Catheter-basal renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009; 373: 1275–1281.
Schlaich MP, Sobotka PA, Krum H, Esler M . Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 2009; 361: 932–934.
Symplicity HTN-2 Investigators. Renal sympathetic denervation in patients with treatment-resistant hypertension: a randomised controlled trial. Lancet 2010; 376: 1903–1909.
Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension. Durability of blood pressure reduction out to 24 months. Hypertension 2011; 57: 911–917.
Ryuzaki M, Suzuki H, Kumagai K, Kumagai H, Ichikawa M, Matsukawa S, Matsumura Y, Saruta T . Renal nerves contribute to salt-induced hypertension in sinoaortic-denervated uninephrectomized rabbits. Am J Physiol Regul Integr Comp Physiol 1992; 62: R733–R737.
Ye S, Ozgur B, Campese VM . Renal afferent impulses, the posterior hypothalamus, and hypertension in rats with chronic renal failure. Kidney Int 1997; 51: 722–727.
Ye S, Zhong H, Duong VN, Campese VM . Losartan reduces central and peripheral sympathetic nerve activity in a rat model of neurogenic hypertension. Hypertension 2002; 39: 1101–1106.
Nagasu H, Satoh M, Kuwabara A, Yorimitsu D, Sakuta T, Tomita N, Kashihara N . Renal denervation reduces glomerular injury by suppressing NAD(P)H oxidase activity in Dahl salt-sensitive rats. Nephrol Dial Transplant 2010; 25: 2889–2898.
Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI . Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 1986; 73: 615–621.
Esler M, Kaye D . Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol 2000; 35 (Suppl 4): S1–S7.
Petersson M, Friberg P, Eisenhofer G, Lambert G, Rundqvist B . Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J 2005; 26: 906–913.