Importance of rhizodeposition in the coupling of plant and microbial productivity

European Journal of Soil Science - Tập 54 Số 4 - Trang 741-750 - 2003
Eric Paterson1
1The Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, UK

Tóm tắt

Summary

Plant roots influence the biological, chemical and physical properties of rhizosphere soil. These effects are a consequence of their growth, their activity and the exudation of organic compounds from them. In natural ecosystems, the linkages between inputs of carbon from plants and microbial activity driven by these inputs are central to our understanding of nutrient cycling in soil and the productivity of these systems. This coupling of plant and microbial productivity is also of increasing importance in agriculture, where the shift towards low‐input systems increases the dependence of plant production on nutrient cycling, as opposed to fertilizers. This review considers the processes by which plants can influence the cycling of nutrients in soil, and in particular the importance of organic inputs from roots in driving microbially mediated transformations of N. This coupling of plant inputs to the functioning of the microbial community is beneficial for acquisition of N by plants, particularly in low‐input systems. This occurs through stimulation of microbes that produce exoenzymes that degrade organic matter, and by promoting cycling of N immobilized in the microbial biomass via predation by protozoa. Also, plants increase the cycling of N by changes in exudation in response to nitrogen supply around roots, and in response to browsing by herbivores. Plants can release compounds in exudates that directly affect the expression of genes in microbes, and this may be an important way of controlling their function to the benefit of the plant.

Từ khóa


Tài liệu tham khảo

10.1007/BF00336047

10.1016/0167-8809(93)90057-V

10.1007/BF00382522

10.1016/S0038-0717(98)00069-8

10.1046/j.1365-2435.1999.00362.x

Bar‐Yosef B., 1996, Plant Roots – The Hidden Half, 581

Bauer W.D., 2001, Can plants manipulate bacterial quorum sensing?, Australian Journal of Plant Physiology, 28, 913

10.1007/BF00379107

10.1016/S1164-5563(00)01059-1

Boschker H.T.S., 1998, Direct linking of microbial populations to specific biogeochemical processes by 13C‐labelling of biomarkers, Nature, London, 392, 801, 10.1038/33900

10.1023/A:1004769317657

10.1023/A:1004384712817

10.1007/BF00011441

10.1093/treephys/19.4-5.313

10.1016/0038-0717(90)90157-U

10.1016/0038-0717(85)90113-0

Coleman D.C., 1977, An analysis of rhizosphere saprophage interactions in terrestrial ecosystems, Ecological Bulletin (Stockholm), 25, 299

10.1007/BF02013280

Darrah P.R., 1998, Inherent Variation in Plant Growth: Physiological Mechanisms and Ecological Consequences, 159

Dharmatilake A.J., 1992, Chemotaxis of Rhizobium meliloti towards nodulation gene‐inducing compounds from alfalfa roots, Applied and Environmental Microbiology, 58, 1153, 10.1128/aem.58.4.1153-1158.1992

10.1016/0038-0717(93)90225-Z

Elliot E.T., 1979, The Soil–Root Interface, 221, 10.1016/B978-0-12-325550-1.50024-0

10.1146/annurev.micro.50.1.727

10.1007/BF00046395

10.1016/0147-5975(87)90024-7

10.1023/A:1011993322286

10.1016/0038-0717(95)00113-1

10.1023/A:1004824019289

10.1016/S0929-1393(96)00126-6

Griffiths B.S., 1994, Soil Protozoa, 65

10.1007/BF00009317

10.1023/A:1004787710886

10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2

10.1016/0045-6535(96)00144-0

10.1007/BF02205578

10.1002/jpln.19861490205

Helal H.M., 1987, Direct and indirect influences of plant roots on organic matter and phosphorus turnover in soil, INTECOL Bulletin, 15, 49

10.1046/j.1365-2435.2001.00519.x

10.1007/BF02280176

10.2307/1937372

10.1007/BF00582238

10.1023/A:1004214814504

10.1128/AEM.65.6.2685-2690.1999

10.1111/j.1365-2389.1985.tb00348.x

10.1007/BF00336088

10.1007/BF00260510

10.1016/0167-8809(89)90091-1

10.1007/BF00336120

10.1016/S0038-0717(01)00117-1

10.1016/S0038-0717(00)00084-5

10.1094/MPMI-3-214

10.1080/00380768.1997.10414731

Lippmann B., 1995, Influence of auxin producing rhizobacteria on root morphology and nutrient accumulation of crops. 1. Changes in root morphology and nutrient accumulation in maize (Zea mays L.) caused by inoculation with indole‐3‐acetic acid producing pseudomonads and Acinetobacter strains or IAA applied exogenously, Angewandte Botanik, 69, 31

10.1097/00010694-192610000-00001

10.1016/S0038-0717(01)00052-9

10.1016/0038-0717(93)90147-4

10.1111/j.1399-3054.1985.tb08661.x

10.1007/BF02185481

10.1007/BF00257647

10.1046/j.1469-8137.2001.00072.x

10.1023/A:1004380832118

Nikolyuk V.F., 1969, Some aspects of the study of soil protozoa, Acta Protozoologica, 7, 99

10.1023/A:1004789407065

10.1093/jexbot/51.349.1449

10.1094/MPMI.1998.11.11.1078

Pokojska‐Burdziej A., 1981, The effect of carbon and nitrogen sources on auxins and gibberellin‐like substances synthesis by bacteria isolated from the roots of pine seedlings (Pinus silvestris L.), Acta Microbiologia Polonica, 30, 347

Radjewski S., 2000, Stable‐isotope probing as a tool in microbial ecology, Nature, London, 403, 646, 10.1038/35001054

10.1111/j.1365-2389.1982.tb01775.x

10.1016/0038-0717(83)90033-0

10.1007/BF02220711

10.1007/BF00260735

10.1111/j.1365-2389.1982.tb01750.x

10.1094/MPMI.2000.13.6.637

10.1093/jexbot/52.358.1093

10.1093/jexbot/52.356.623

10.1128/AEM.57.5.1485-1488.1991

10.1016/0038-0717(87)90099-X

10.1021/bk-1994-0563.ch002

10.1016/S0038-0717(01)00102-X

10.1017/S002185969700498X