Implicitly learned suppression of irrelevant spatial locations

Psychonomic Bulletin & Review - Tập 23 - Trang 1873-1881 - 2016
Andrew B. Leber1, Rachael E. Gwinn1, Yoolim Hong1, Ryan J. O’Toole2
1Department of Psychology, The Ohio State University, Columbus, USA
2Department of Biology, Dartmouth College, Hanover, USA

Tóm tắt

How do we ignore a salient, irrelevant stimulus whose location is predictable? A variety of studies using instructional manipulations have shown that participants possess the capacity to exert location-based suppression. However, for the visual search challenges we face in daily life, we are not often provided explicit instructions and are unlikely to consciously deliberate on what our best strategy might be. Instead, we might rely on our past experience—in the form of implicit learning—to exert strategic control. In this paper, we tested whether implicit learning could drive spatial suppression. In Experiment 1, participants searched displays in which one location contained a target, while another contained a salient distractor. An arrow cue pointed to the target location with 70 % validity. Also, unbeknownst to the participants, the same arrow cue predicted the distractor location with 70 % validity. Results showed facilitated RTs to the predicted target location, confirming target enhancement. Critically, distractor interference was reduced at the predicted distractor location, revealing that participants used spatial suppression. Further, we found that participants had no explicit knowledge of the cue-distractor contingencies, confirming that the learning was implicit. In Experiment 2, to seek further evidence for suppression, we modified the task to include occasional masked probes following the arrow cue; we found worse probe identification accuracy at the predicted distractor location than control locations, providing converging evidence that observers spatially suppressed the predicted distractor locations. These results reveal an ecologically desirable mechanism of suppression, which functions without the need for conscious knowledge or externally guided instructions.

Tài liệu tham khảo

Anderson, B. A., & Folk, C. L. (2012). Dissociating location-specific inhibition and attention shifts: Evidence against the disengagement account of contingent capture. Attention, Perception, & Psychophysics, 74(6), 1183–1198. Beck, V. M., & Hollingworth, A. (2015). Evidence for negative feature guidance in visual search is explained by spatial recoding. Journal of Experimental Psychology: Human Perception and Performance, 41(5), 1190–1196. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. Curtis, C. E., Rao, V. Y., & D’Esposito, M. (2004). Maintenance of spatial and motor codes during oculomotor delayed response tasks. Journal of Neuroscience, 24(16), 3944–3952. Dhawan, S., Deubel, H., & Jonikaitis, D. (2013). Inhibition of saccades elicits attentional suppression. Journal of Vision, 13(6), 9. Eriksen, C. W., & Collins, J. F. (1969). Temporal course of selective attention. Journal of Experimental Psychology, 80(2, Pt.1), 254–261. Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12(6), 499–504. Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030–1044. Foxe, J. J., & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2, 154. Geng, J. J. (2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23(2), 147–153. Goschy, H., Bakos, S., Müller, H. J., & Zehetleitner, M. (2014). Probability cueing of distractor locations: Both intertrial facilitation and statistical learning mediate interference reduction. Frontiers in Psychology, 5, 1195. Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Research, 18(10), 1279–1296. Kawahara, J. (2010). Identifying a “default” visual search mode with operant conditioning. Acta Psychologica, 135(1), 38–49. Kelley, T. A., & Yantis, S. (2009). Learning to attend: Effects of practice on information selection. Journal of Vision, 9(7), 16. Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–147. Leber, A. B., Lechak, J. R., & Tower-Richardi, S. M. (2013). What do fast response times tell us about attentional control? Journal of Vision, 13(3), 31. Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58(7), 977–991. Miller, J. (1988). Components of the location probability effect in visual search tasks. Journal of Experimental Psychology: Human Perception and Performance, 14(3), 453–471. Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, & Psychophysics, 74(8), 1590–1605. Munneke, J., Van der Stigchel, S., & Theeuwes, J. (2008). Cueing the location of a distractor: An inhibitory mechanism of spatial attention? Acta Psychologica, 129(1), 101–107. Munoz, D. P., & Everling, S. (2004). Look away: The anti-saccade task and the voluntary control of eye movement. Nature Reviews Neuroscience, 5(3), 218–228. Payne, L., Guillory, S., & Sekuler, R. (2013). Attention-modulated alpha-band oscillations protect against intrusion of irrelevant information. Journal of Cognitive Neuroscience, 25(9), 1463–1476. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. Attention and Performance X: Control of Language Processes, 32, 531–556. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160–174. Proulx, M. J. (2011). Individual differences and metacognitive knowledge of visual search strategy. PLoS ONE, 6(10), e27043. Reder, L. M., Weber, K., Shang, J., & Vanyukov, P. M. (2003). The adaptive character of the attentional system: Statistical sensitivity in a target localization task. Journal of Experimental Psychology: Human Perception and Performance, 29(3), 631–649. Ruff, C. C., & Driver, J. (2006). Attentional preparation for a lateralized visual distractor: Behavioral and fMRI evidence. Journal of Cognitive Neuroscience, 18(4), 522–538. Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455–1470. Stadler, M. A., & Frensch, P. A. (1998). Handbook of implicit learning. Thousand Oaks, CA: Sage. Tsal, Y., & Makovski, T. (2006). The attentional white bear phenomenon: The mandatory allocation of attention to expected distractor locations. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 351–363. Walthew, C., & Gilchrist, I. D. (2006). Target location probability effects in visual search: An effect of sequential dependencies. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1294–1301. Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of procedural knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(6), 1047–1060.