Implicit finite difference approximation for time fractional diffusion equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mainardi, 1997
Diethelm, 1999, On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity, 217
Liu, 2004, Numerical solution of the space fractional Fokker–Planck equation, JCAM, 166, 209
Meerschaert, 2004, Finite difference approximations for fractional advection-dispersion flow equations, JCAM, 172, 65
Chavez, 1998, Fractional diffusion equation to describe Lévy flights, Phys. Lett. A, 239, 13, 10.1016/S0375-9601(97)00947-X
Agrawal, 2002, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics, 29, 145, 10.1023/A:1016539022492
Liu, 2006, A fractional-order implicit difference approximation for the space-time fractional diffusion equation, ANZIAM J., 47, C48, 10.21914/anziamj.v47i0.1030
Shen, 2005, Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends, ANZIAM J., 46 (E), C871, 10.21914/anziamj.v46i0.995
Yuste, 2005, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42, 1862, 10.1137/030602666
Yuste, 2006, Weighted average finite difference methods for fractional diffusion equations, J. Comp. Phys., 216, 264, 10.1016/j.jcp.2005.12.006
Podlubny, 1999
Langlands, 2005, The accuracy and stability analysis of an implicit solution method for the fractional diffusion equation, J. Comp. Phys., 205, 719, 10.1016/j.jcp.2004.11.025
Samko, 1993
Oldman, 1974
Richtmyer, 1967