Implicit finite difference approximation for time fractional diffusion equations

Computers & Mathematics with Applications - Tập 56 Số 4 - Trang 1138-1145 - 2008
Diego A. Murio1
1University of Cincinnati, Department of Mathematical Sciences, Cincinnati, OH 45221-0025, USA#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mainardi, 1997

Diethelm, 1999, On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity, 217

Liu, 2004, Numerical solution of the space fractional Fokker–Planck equation, JCAM, 166, 209

Meerschaert, 2004, Finite difference approximations for fractional advection-dispersion flow equations, JCAM, 172, 65

Chavez, 1998, Fractional diffusion equation to describe Lévy flights, Phys. Lett. A, 239, 13, 10.1016/S0375-9601(97)00947-X

Agrawal, 2002, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics, 29, 145, 10.1023/A:1016539022492

Liu, 2006, A fractional-order implicit difference approximation for the space-time fractional diffusion equation, ANZIAM J., 47, C48, 10.21914/anziamj.v47i0.1030

Shen, 2005, Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends, ANZIAM J., 46 (E), C871, 10.21914/anziamj.v46i0.995

Yuste, 2005, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42, 1862, 10.1137/030602666

Yuste, 2006, Weighted average finite difference methods for fractional diffusion equations, J. Comp. Phys., 216, 264, 10.1016/j.jcp.2005.12.006

Podlubny, 1999

Langlands, 2005, The accuracy and stability analysis of an implicit solution method for the fractional diffusion equation, J. Comp. Phys., 205, 719, 10.1016/j.jcp.2004.11.025

Samko, 1993

Oldman, 1974

Richtmyer, 1967