Implicit dynamic analysis using an isogeometric Reissner–Mindlin shell formulation

International Journal for Numerical Methods in Engineering - Tập 110 Số 9 - Trang 803-825 - 2017
Paul Sobota1,2, Wolfgang Dornisch3, Ralf Müller3, Sven Klinkel2
1Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
2Lehrstuhl für Baustatik und Baudynamik RWTH Aachen Mies‐van‐der‐Rohe‐Str. 1 Aachen 52074 Germany
3Lehrstuhl für Technische Mechanik Technische Universität Kaiserslautern Gottlieb‐Daimler‐Str. Kaiserslautern 67663 Germany

Tóm tắt

SummaryIn isogeometric analysis, identical basis functions are used for geometrical representation and analysis. In this work, non‐uniform rational basis splines basis functions are applied in an isoparametric approach. An isogeometric Reissner–Mindlin shell formulation for implicit dynamic calculations using the Galerkin method is presented. A consistent as well as a lumped matrix formulation is implemented. The suitability of the developed shell formulation for natural frequency analysis is demonstrated by a numerical example. In a second set of examples, transient problems of plane and curved geometries undergoing large deformations in combination with nonlinear material behavior are investigated. Via a zero‐thickness stress algorithm for arbitrary material models, a J2‐plasticity constitutive law is implemented. In the numerical examples, the effectiveness, robustness, and superior accuracy of a continuous interpolation method of the shell director vector is compared with experimental results and alternative numerical approaches. Copyright © 2016 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1016/j.cma.2004.10.008

10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1

10.1142/S0218202506001455

10.1016/j.cma.2007.04.007

10.1002/9780470749081

10.1016/j.cma.2009.01.021

10.1016/j.cma.2009.01.022

10.1016/j.cma.2008.12.004

10.1016/j.cma.2013.07.017

10.1016/j.cma.2009.08.013

10.1016/j.cma.2011.08.014

10.1016/j.cma.2010.12.003

10.1016/j.cma.2009.05.011

10.1016/j.cma.2012.09.010

10.1016/j.cma.2014.03.017

DornischW.Interpolation of rotations and coupling of patches in isogeometric Reissner–Mindlin shell analysis.Ph.D. Thesis Lehrstuhl für Baustatik und Baudynamik RWTH Aachen 2015.

10.1016/j.cma.2016.01.018

10.1016/j.cma.2014.07.020

10.1016/j.finel.2015.02.002

10.1002/nme.4505

10.1016/j.cma.2013.11.023

10.1007/s00466-014-0978-4

10.1016/j.cma.2013.08.002

10.1002/nme.4834

10.1016/j.cma.2012.10.018

10.1016/j.cma.2012.11.020

10.1002/pamm.201110095

10.1016/j.cma.2011.12.003

10.1002/nme.4568

10.1007/s00466-013-0955-3

10.1016/j.cma.2013.10.009

10.1002/nme.4918

10.1016/j.cma.2014.09.012

10.1016/j.cma.2016.07.038

10.1016/j.cma.2014.09.033

10.1016/j.cma.2005.09.027

10.1016/j.cma.2013.03.011

10.1016/j.finel.2012.06.005

10.1002/nme.4282

Van OlmenT CooxL VandepitteD DesmetW.Dynamic analysis of shell structures containing kinks using an isogeometric Kirchhoff–Love formulation.Third International Conference on Isogeometric Analysis (IGA 2015):Trondheim 2015:Page 1.

SchäubleAK.Isogeometric Galerkin finite elements in time and space.Master Thesis Institut für Baustatik und Baudynamik universität Stuttgart 2013.

Klinkel S, 2002, Using finite strain 3D‐material models in beam and shell elements, Engineering Computations, 19, 902, 10.1108/02644400210423918

10.1002/nme.1387

10.1007/978-3-642-59223-2

10.1007/s00419-005-0391-8

10.1016/0045-7825(93)90008-L

10.1002/1097-0207(20000830)48:12<1675::AID-NME957>3.0.CO;2-6

10.1002/eqe.4290050306

10.1016/0045-7825(84)90026-4

10.1016/j.compstruc.2010.11.006

10.1016/S0263-8223(02)00034-X

Hughes TJR, 2000, The Finite Element Method, Linear Static and Dynamic Finite Element Analysis

BalmerHA WitmerEA.Theoretical‐experimental correlation of large dynamic and permanent deformations of impulsibely‐loaded simple structures.Technical Report Massachusetts Inst of Tech Cambridge Aeroelastic and Structures Research Lab Cambridge MA USA 1964.

10.1016/j.jcp.2013.02.021

10.1115/1.3408793

10.1007/BF02326708