Implicit Difference Methods for First-Order Partial Differential Functional Equations

Nonlinear Oscillations - Tập 8 Số 2 - Trang 198-213 - 2005
A. Kepczyńska1
1Gdansk University of Technology, Gdansk, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

P. Brandi, Z. Kamont, and A. Salvadori, “Approximate solutions of mixed problems for first order partial differential functional equations,” Atti Semin. Mat. Fis. Univ. Modena, 39, 277–302 (1991).

Z. Kamont, “Finite difference approximations for first-order partial differential functional equations,” Ukr. Mat. Zh., 46, No.7, 985–996 (1994).

H. Leszczynski, “Convergence results for unbounded solutions of first order nonlinear differential functional equations,” Ann. Pol. Math., 54, 1–16 (1996).

D. Jaruszewska-Walczak and Z. Kamont, “Difference methods for quasilinear hyperbolic differential functional systems on the Haar pyramid,” Bull. Belg. Math. Soc., 10, 267–290 (2003).

D. Jaruszewska-Walczak and Z. Kamont, “Numerical methods for hyperbolic functional differential problems on the Haar pyramid,” Computing, 65, 45–72 (2000).

K. Przadka, “Difference methods for nonlinear partial differential functional equations of the first order,” Math. Nachr., 138, 105–123 (1988).

Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Kluwer, Dordrecht (1999).

E. Godlewski and P. A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, New York (1996).

K. M. Magomedov and A. S. Kholodov, Mesh-Characteristic Numerical Methods [in Russian], Nauka, Moscow (1988).

T. Czlapinski, “On the mixed problem for quasilinear partial differential functional equations of the first order,” Z. Anal. Anwend., 16, 463–478 (1997).

M. I. Umanaliev and J. A. Vied', “On integral differential equations with first-order partial derivatives,” Differents. Uravn., 25, 465–477 (1989).