Implications of various phosphoenolpyruvate-carbohydrate phosphotransferase system mutations on glycerol utilization and poly(3-hydroxybutyrate) accumulation in Ralstonia eutropha H16
Tóm tắt
The enhanced global biodiesel production is also yielding increased quantities of glycerol as main coproduct. An effective application of glycerol, for example, as low-cost substrate for microbial growth in industrial fermentation processes to specific products will reduce the production costs for biodiesel. Our study focuses on the utilization of glycerol as a cheap carbon source during cultivation of the thermoplastic producing bacterium Ralstonia eutropha H16, and on the investigation of carbohydrate transport proteins involved herein. Seven open reading frames were identified in the genome of strain H16 to encode for putative proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS). Although the core components of PEP-PTS, enzyme I (ptsI) and histidine phosphocarrier protein (ptsH), are available in strain H16, a complete PTS-mediated carbohydrate transport is lacking. Growth experiments employing several PEP-PTS mutants indicate that the putative ptsMHI operon, comprising ptsM (a fructose-specific EIIA component of PTS), ptsH, and ptsI, is responsible for limited cell growth and reduced PHB accumulation (53%, w/w, less PHB than the wild type) of this strain in media containing glycerol as a sole carbon source. Otherwise, the deletion of gene H16_A0384 (ptsN, nitrogen regulatory EIIA component of PTS) seemed to largely compensate the effect of the deleted ptsMHI operon (49%, w/w, PHB). The involvement of the PTS homologous proteins on the utilization of the non-PTS sugar alcohol glycerol and its effect on cell growth as well as PHB and carbon metabolism of R. eutropha will be discussed.
Tài liệu tham khảo
Ashby RD, Solaiman DKY, Foglia TA: Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J Polym Environ 2004, 12: 105–112.
Ashby RD, Solaiman DKY, Foglia TA: Synthesis of short-/medium-chain-length poly(hydroxyalkanoate) blends by mixed culture fermentation of glycerol. Biomacromolecules 2005, 6: 2106–2112. 10.1021/bm058005h
Barabote RD, Saier MH: Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev 2005, 69: 608–634. 10.1128/MMBR.69.4.608-634.2005
Bormann EJ, Roth M: The production of polyhydroxybutyrate by Methylobacterium rhodesianum and Ralstonia eutropha in media containing glycerol and casein hydrolysates. Biotechnol Lett 1999, 21: 1059–1063. 10.1023/A:1005640712329
Brandl H, Gross RA, Lenz RW, Fuller RC: Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 1988, 66: 2117–2124.
Cases I, Velázquez F, de Lorenzo V: The ancestral role of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics. Res Microbiol 2007, 158: 666–670. 10.1016/j.resmic.2007.08.002
Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR: Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 2009, 44: 509–515. 10.1016/j.procbio.2009.01.008
Chee JY, Tan Y, Samian MR, Sudesh K: Isolation and characterization of a Burkholderia sp. USM (JCM15050) capable of producing polyhydroxyalkanoate (PHA) from triglycerides, fatty acids and glycerols. J Polym Environ 2010, 18: 584–592. 10.1007/s10924-010-0204-1
Commichau FM, Forchhammer K, Stülke J: Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 2006, 9: 167–172. 10.1016/j.mib.2006.01.001
da Silva GP, Mack M, Contiero J: Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol Adv 2009, 27: 30–39. 10.1016/j.biotechadv.2008.07.006
Darbon E, Ito K, Huang HS, Yoshimoto T, Poncet S, Deutscher J: Glycerol transport and phophoenolpyruvate-dependent enzyme I- and HPr-catalysed phosphorylation of glycerol kinase in Thermus flavus . Microbiology 1999, 145: 3205–3212.
Deutscher J, Francke C, Postma PW: How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2006, 70: 939–1031. 10.1128/MMBR.00024-06
Friedrich CG, Friedrich B, Bowien B: Formation of enzymes of autotrophic metabolism during heterotrophic growth of Alcaligenes eutrophus . J Gen Microbiol 1981, 122: 69–78.
Gottschalk G, Eberhardt U, Schlegel HG: Verwertung von Fructose durch Hydrogenomonas H16 (I.). Arch Mikrobiol 1964, 48: 95–108. 10.1007/BF00406600
Haywood GW, Anderson AJ, Chu L, Dawes EA: Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxyalkanoate synthesizing organism Alcaligenes eutrophus . FEMS Microbiol Lett 1988, 52: 91–96. 10.1111/j.1574-6968.1988.tb02577.x
Haywood GW, Anderson AJ, Chu L, Dawes EA: The role of NADH- and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus . FEMS Microbiol Lett 1988, 52: 259–264. 10.1111/j.1574-6968.1988.tb02607.x
Haywood GW, Anderson AJ, Dawes EA: The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus . FEMS Microbiol Lett 1989, 57: 1–6. 10.1111/j.1574-6968.1989.tb03210.x
ICIS pricing: Reed Business Information Limited. 2008. [http://www.icispricing.com/]
Kaddor C, Steinbüchel A: Effects of homologous phosphoenolpyruvate-carbohydrate phosphotransferase system proteins on carbohydrate uptake and poly(3-hydroxybutyrate) accumulation in Ralstonia eutropha H16. Appl Environ Microbiol 2011, 77: 3582–3590. 10.1128/AEM.00218-11
Kanehisa M, Goto S, Kawashima S, Nakaya A: The KEGG database at GenomeNet. Nucleic Acids Res 2002, 30: 42–46. 10.1093/nar/30.1.42
Kotrba P, Inui M, Yukawa H: Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng 2001, 92: 502–517. 10.1263/jbb.92.502
Krauße D, Hunold K, Kusian B, Lenz O, Stülke J, Bowien B, Deutscher J: Essential role of the hprK gene in Ralstonia eutropha H16. J Mol Microbiol Biotechnol 2009, 17: 146–152. 10.1159/000233505
Lee SY: Deciphering bioplastic production. Nat Biotechnol 2006, 24: 1227–1229. 10.1038/nbt1006-1227
Mothes G, Schnorpfeil C, Ackermann JU: Production of PHB from crude glycerol. Eng Life Sci 2007, 7: 475–479. 10.1002/elsc.200620210
Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R: Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 2008, 74: 1124–1135. 10.1128/AEM.02192-07
Noguez R, Segura D, Moreno S, Hernandez A, Juarez K, Espín G: Enzyme INtr , NPr and IIANtr are involved in regulation of the poly-β-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii . J Mol Microbiol Biotechnol 2008, 15: 244–254. 10.1159/000108658
Pflüger K, de Lorenzo V: Evidence of in vivo cross talk between the nitrogen-related and fructose-related branches of the carbohydrate phosphotransferase system of Pseudomonas putida . J Bacteriol 2008, 190: 3374–3380. 10.1128/JB.02002-07
Pflüger-Grau K, Görke B: Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 2010, 18: 205–214. 10.1016/j.tim.2010.02.003
Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwartz E, Strittmatter A, Voß I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B: Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16. Nat Biotechnol 2006, 24: 1257–1262. 10.1038/nbt1244
Pries A, Priefert H, Krüger N, Steinbüchel A: Identification and characterization of two Alcaligenes eutrophus gene loci relevant to the phenotype poly(β-hydroxybutyric acid)-leaky which exhibit homology to ptsH and ptsI of Escherichia coli . J Bacteriol 1991, 173: 5843–5853.
Reizer J, Reizer A, Saier MH Jr, Jacobson GR: A proposed link between nitrogen and carbon metabolism involving protein phosphorylation in bacteria. Protein Sci 1992, 1: 722–726. 10.1002/pro.5560010604
Schindler J: Die Synthese von Poly-β-hydroxybuttersäure durch Hydrogenomonas H16: Die zu β-Hydroxybutyryl-Coenzym A führenden Reaktionsschritte. Arch Mikrobiol 1964, 49: 236–255. 10.1007/BF00409747
Schlegel HG, Gottschalk G, Bartha V: Formation and utilization of poly-β-hydroxybutyric acid by knallgas bacteria ( Hydrogenomonas ). Nature 1961, 29: 463–465.
Schlegel HG, Kaltwasser H, Gottschalk G: Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 1961, 38: 209–222. 10.1007/BF00422356
Schubert P, Steinbüchel A, Schlegel HG: Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli . J Bacteriol 1988, 170: 5837–5847.
Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G: Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H 2 -based lithoautotrophy and anaerobiosis. J Mol Biol 2003, 332: 369–383. 10.1016/S0022-2836(03)00894-5
Schwartz E, Voigt B, Zühlke D, Pohlmann A, Lenz O, Albrecht D, Schwarze A, Kohlmann Y, Krause C, Hecker M, Friedrich B: A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics 2009, 9: 5132–5142. 10.1002/pmic.200900333
Schweizer HP, Jump R, Po C: Structure and gene-polypeptide relationships of the region encoding glycerol diffusion facilitator ( glpF ) and glycerol kinase ( glpK ) of Pseudomonas aeruginosa . Microbiology 1997, 143: 1287–1297. 10.1099/00221287-143-4-1287
Solaiman DKY, Ashby RD, Foglia TA, Marmer WN: Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoates). Appl Microbiol Biotechnol 2006, 71: 783–789. 10.1007/s00253-006-0451-1
Srivastava S, Urban M, Friedrich B: Mutagenesis of Alcaligenes eutrophus by insertion of the drug-resistance transposon Tn 5 . Arch Microbiol 1982, 131: 203–207. 10.1007/BF00405879
Stülke J, Hillen W: Coupling physiology and gene regulation in bacteria: the phosphotransferase sugar uptake system delivers the signals. Naturwissenschaften 1998, 85: 583–592. 10.1007/s001140050555
Sweet G, Gandor C, Voegele R, Wittekindt N, Beuerle J, Truniger V, Lin ECC, Boos W: Glycerol facilitator of Escherichia coli : cloning of glpF and identification of the glpF product. J Bacteriol 1990, 172: 424–430.
Timm A, Steinbüchel A: Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 1990, 56: 3360–3367.
Velázquez F, Pflüger K, Cases I, De Eugenio LI, de Lorenzo V: The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida . J Bacteriol 2007, 189: 4529–4533. 10.1128/JB.00033-07
Voegele RT, Sweet GD, Boos W: Glycerol kinase of Escherichia coli is activated by interaction with glycerol facilitator. J Bacteriol 1993, 175: 1087–1094.
Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP: Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog 2010, 26: 424–430.
Zimmer B, Hillmann A, Görke B: Requirements for the phosphorylation of the Escherichia coli EIIANtr protein in vivo . FEMS Microbiol Lett 2008, 286: 96–102. 10.1111/j.1574-6968.2008.01262.x