Implications of the structure of human uridine phosphorylase 1 on the development of novel inhibitors for improving the therapeutic window of fluoropyrimidine chemotherapy

Springer Science and Business Media LLC - Tập 9 - Trang 1-9 - 2009
Tarmo P Roosild1, Samantha Castronovo1, Michael Fabbiani1, Giuseppe Pizzorno1
1Department of Drug Development, Nevada Cancer Institute, Las Vegas, USA

Tóm tắt

Uridine phosphorylase (UPP) is a key enzyme of pyrimidine salvage pathways, catalyzing the reversible phosphorolysis of ribosides of uracil to nucleobases and ribose 1-phosphate. It is also a critical enzyme in the activation of pyrimidine-based chemotherapeutic compounds such a 5-fluorouracil (5-FU) and its prodrug capecitabine. Additionally, an elevated level of this enzyme in certain tumours is believed to contribute to the selectivity of such drugs. However, the clinical effectiveness of these fluoropyrimidine antimetabolites is hampered by their toxicity to normal tissue. In response to this limitation, specific inhibitors of UPP, such as 5-benzylacyclouridine (BAU), have been developed and investigated for their ability to modulate the cytotoxic side effects of 5-FU and its derivatives, so as to increase the therapeutic index of these agents. In this report we present the high resolution structures of human uridine phosphorylase 1 (hUPP1) in ligand-free and BAU-inhibited conformations. The structures confirm the unexpected solution observation that the human enzyme is dimeric in contrast to the hexameric assembly present in microbial UPPs. They also reveal in detail the mechanism by which BAU engages the active site of the protein and subsequently disables the enzyme by locking the protein in a closed conformation. The observed inter-domain motion of the dimeric human enzyme is much greater than that seen in previous UPP structures and may result from the simpler oligomeric organization. The structural details underlying hUPP1's active site and additional surfaces beyond these catalytic residues, which coordinate binding of BAU and other acyclouridine analogues, suggest avenues for future design of more potent inhibitors of this enzyme. Notably, the loop forming the back wall of the substrate binding pocket is conformationally different and substantially less flexible in hUPP1 than in previously studied microbial homologues. These distinctions can be utilized to discover novel inhibitory compounds specifically optimized for efficacy against the human enzyme as a step toward the development of more effective chemotherapeutic regimens that can selectively protect normal tissues with inherently lower UPP activity.

Tài liệu tham khảo

Cao D, Pizzorno G: Uridine phosophorylase: an important enzyme in pyrimidine metabolism and fluoropyrimidine activation. Drugs Today (Barc) 2004, 40: 431–443. Cappiello M, Mascia L, Scolozzi C, Giorgelli F, Ipata PL: In vitro assessment of salvage pathways for pyrimidine bases in rat liver and brain. Biochim Biophys acta 1998, 1425: 273–281. Tozzi MG, Camici M, Mascia L, Sgarrella F, Ipata PL: Pentose phosphates in nucleoside interconversion and catabolism. FEBS J 2006, 273: 1089–1101. Morgunova EYu, Mikhailov AM, Popov AN, Blagova EV, Smirnova EA, Vainshtein BK, Mao C, Armstrong ShR, Ealick SE, Komissarov AA: Atomic structure at 2.5 Å resolution of uridine phosphorylase from E. coli as refined in the monoclinic crystal lattice. FEBS Lett 1995, 367: 183–187. Burling FT, Kniewel R, Buglino JA, Chadha T, Beckwith A, Lima CD: Structure of Escherichia coli uridine phosphorylase at 2.0 Å. Acta Crystallogr D Biol Crystallogr 2003, 59: 73–76. Caradoc-Davies TT, Cutfield SM, Lamont IL, Cutfield JF: Crystal structures of Escherichia coli uridine phosphorylase in two native and three complexed forms reveal basis of substrate specificity, induced conformational changes and influence of potassium. J Mol Biol 2004, 337: 337–354. Bu W, Settembre EC, el Kouni MH, Ealick SE: Structural basis for inhibition of Escherichia coli uridine phosphorylase by 5-substituted acyclouridines. Acta Crystallogr D Biol Crystallogr 2005, 61: 863–872. Dontsova MV, Gabdoulkhakov AG, Molchan OK, Lashkov AA, Garber MB, Mironov AS, Zhukhlistova NE, Morgunova EY, Voelter W, Betzel C, Zhang Y, Ealick SE, Mikhailov AM: Preliminary investigation of the three-dimensional structure of Salmonella typhimurium uridine phosphorylase in the crystalline state. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005, 61: 337–340. Pugmire MJ, Ealick SE: Structural analyses reveal two distinct families of nucleoside phosphorylases. Biochem J 2002, 361: 1–25. Watanabe S, Uchida T: Cloning and expression of human uridine phosphorylase. Biochem Biophys Res Commun 1995, 216: 265–272. Johansson M: Identification of a novel human uridine phosphorylase. Biochem Biophys Res Commun 2003, 307: 41–46. Cao D, Russell RL, Zhang D, Leffert JJ, Pizzorno G: Uridine phosphorylase (-/-) murine embryonic stem cells clarify the key role of this enzyme in the regulation of the pyrimidine salvage pathway and in the activation of fluoropyrimidines. Cancer Res 2002, 62: 2313–2317. Liu M, Cao D, Russell R, Handschumacher RE, Pizzorno G: Expression, characterization, and detection of human uridine phosphorylase and identification of variant uridine phosphorolytic activity in selected human tumors. Cancer Res 1998, 58: 5418–5424. Chu MY, Naguib FN, Iltzsch MH, el Kouni MH, Chu SH, Cha S, Calabresi P: Potentiation of 5-fluoro-2'-deoxyuridine antineoplastic activity by the uridine phosphorylase inhibitors benzylacyclouridine and benzyloxybenzylacyclouridine. Cancer Res 1984, 44: 1852–1856. Al Safarjalani ON, Rais R, Shi J, Schinazi RF, Naguib FN, el Kouni MH: Modulation of 5-fluorouracil host-toxicity and chemotherapeutic efficacy against human colon tumors by 5-(phenylthio)acyclouridine, a uridine phosphorylase inhibitor. Cancer Chemother Pharmacol 2006, 58: 692–698. Niedzwicki JG, Chu SH, el Kouni MH, Rowe EC, Cha S: 5-benzylacyclouridine and 5-benzyloxybenzylacyclouridine, potent inhibitors of uridine phosphorylase. Biochem Pharmacol 1982, 31: 1857–1861. Pizzorno G, Yee L, Burtness BA, Marsh JC, Darnowski JW, Chu MY, Chu SH, Chu E, Leffert JJ, Handschumacher RE, Calabresi P: Phase I clinical and pharmacological studies of benzylacyclouridine, a uridine phosphorylase inhibitor. Clin Cancer Res 1998, 4: 1165–1175. Klecker RW, Cysyk RL, Collins JM: Zebularine metabolism by aldehyde oxidase in hepatic cytosol from humans, monkeys, dogs, rats, and mice: influence of sex and inhibitors. Bioorg Med Chem 2006, 14: 62–66. Evans GB, Furneaux RH, Lewandowicz A, Schramm VL, Tyler PC: Synthesis of second-generation transition state analogues of human purine nucleoside phosphorylase. J Med Chem 2003, 46: 5271–5276. Russell RL, Cao D, Zhang D, Handschumacher RE, Pizzorno G: Uridine phosphorylase association with vimentin. Intracellular distribution and localization. J Biol Chem 2001, 276: 13302–13307. Otwinowski Z, Minor W: Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 1997, 276: 307–326. Collaborative Computational Project Number 4: The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 1994, 50: 760–763. Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research 2003, 31: 3381–3385. Cohen SX, Morris RJ, Fernandez FJ, Ben Jelloul M, Kakaris M, Parthasarathy V, Lamzin VS, Kleywegt GJ, Perrakis A: Towards complete validated models in the next generation of ARP/wARP. Acta Crystallogr D Biol Crystallogr 2004, 60: 2222–2229. Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004, 60: 2126–2132. Laskowski RA, Moss DS, Thornton JM: Main-chain bond lengths and bond angles in protein structures. J Mol Biol 1993, 231: 1049–1067. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB 3rd, Snoeyink J, Richardson JS, et al.: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007, 35: W375–383.