Implications of the principle of maximum conformality for the QCD strong coupling

Physics Letters B - Tập 773 - Trang 98-104 - 2017
Alexandre Deur1, Jian-Ming Shen2, Xing-Gang Wu2, Stanley J. Brodsky3, Guy F. de Téramond4
1Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
2Department of Physics, Chongqing University, Chongqing 401331, PR China
3SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
4Universidad de Costa Rica, 11501 San José, Costa Rica

Tài liệu tham khảo

Zakharov, 1998, Renormalons as a bridge between perturbative and nonperturbative physics, Prog. Theor. Phys. Suppl., 131, 107, 10.1143/PTPS.131.107 Beneke, 1999, Renormalons, Phys. Rep., 317, 1, 10.1016/S0370-1573(98)00130-6 Brodsky, 1983, On the elimination of scale ambiguities in perturbative quantum chromodynamics, Phys. Rev. D, 28, 228, 10.1103/PhysRevD.28.228 Brodsky, 1995, Commensurate scale relations in quantum chromodynamics, Phys. Rev. D, 51, 3652, 10.1103/PhysRevD.51.3652 Brodsky, 2012, Scale setting using the extended renormalization group and the principle of maximum conformality: the QCD coupling constant at four loops, Phys. Rev. D, 85, 10.1103/PhysRevD.85.034038 Brodsky, 2012, Eliminating the renormalization scale ambiguity for top-pair production using the principle of maximum conformality, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.042002 Brodsky, 2012, Setting the renormalization scale in QCD: the principle of maximum conformality, Phys. Rev. D, 86, 10.1103/PhysRevD.86.085026 Mojaza, 2013, Systematic all-orders method to eliminate renormalization-scale and scheme ambiguities in perturbative QCD, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.192001 Brodsky, 2014, Systematic scale-setting to all orders: the principle of maximum conformality and commensurate scale relations, Phys. Rev. D, 89, 10.1103/PhysRevD.89.014027 Brodsky, 1998, Aspects of SU(Nc) gauge theories in the limit of small number of colors, Phys. Lett. B, 417, 145, 10.1016/S0370-2693(97)01209-4 Gell-Mann, 1954, Quantum electrodynamics at small distances, Phys. Rev., 95, 1300, 10.1103/PhysRev.95.1300 Wu, 2013, The renormalization scale-setting problem in QCD, Prog. Part. Nucl. Phys., 72, 44, 10.1016/j.ppnp.2013.06.001 Wu, 2015, Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review, Rep. Prog. Phys., 78, 10.1088/0034-4885/78/12/126201 Brodsky, 2012, Self-consistency requirements of the renormalization group for setting the renormalization scale, Phys. Rev. D, 86, 10.1103/PhysRevD.86.054018 Wang Grunberg, 1980, Renormalization group improved perturbative QCD, Phys. Lett. B, 95, 70, 10.1016/0370-2693(80)90402-5 Bjorken, 1966, Applications of the chiral U(6)⊗U(6) algebra of current densities, Phys. Rev., 148, 1467, 10.1103/PhysRev.148.1467 Bjorken, 1970, Inelastic scattering of polarized leptons from polarized nucleons, Phys. Rev. D, 1, 1376, 10.1103/PhysRevD.1.1376 Brodsky, 2015, Light-front holographic QCD and emerging confinement, Phys. Rep., 584, 1, 10.1016/j.physrep.2015.05.001 Deur, 2007, Experimental determination of the effective strong coupling constant, Phys. Lett. B, 650, 244, 10.1016/j.physletb.2007.05.015 Deur, 2008, Determination of the effective strong coupling constant αs,g1(Q2) from CLAS spin structure function data, Phys. Lett. B, 665, 349, 10.1016/j.physletb.2008.06.049 Baikov, 2010, Adler function, Bjorken sum rule, and the Crewther relation to order αs4 in a general gauge theory, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.132004 Baikov, 2012, Vector correlator in massless QCD at order O(αs4) and the QED beta-function at five loop, J. High Energy Phys., 1207 Deur, 2004, Experimental determination of the evolution of the Bjorken integral at low Q2, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.212001 Deur, 2008, Experimental study of isovector spin sum rules, Phys. Rev. D, 78, 10.1103/PhysRevD.78.032001 Deur, 2014, High precision determination of the Q2 evolution of the Bjorken Sum, Phys. Rev. D, 90, 10.1103/PhysRevD.90.012009 Baikov, 2017, Five-loop running of the QCD coupling constant, Phys. Rev. Lett., 118, 10.1103/PhysRevLett.118.082002 Luthe, 2016, Towards the five-loop Beta function for a general gauge group, J. High Energy Phys., 1607 Kniehl, 2006, Strong-coupling constant with flavor thresholds at five loops in the modified minimal-subtraction scheme, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.042001 Shen Wu, 2016, Importance of proper renormalization scale-setting for QCD testing at colliders, Front. Phys., 11, 10.1007/s11467-015-0518-5 If the Q value ensures that nf=4, e.g. Q≥mc∼1.275GeV, we get a reasonable Q3≃40Q. Deur, 2015, Connecting the hadron mass scale to the fundamental mass scale of quantum chromodynamics, Phys. Lett. B, 750, 528, 10.1016/j.physletb.2015.09.063 Deur, 2016, On the interface between perturbative and nonperturbative QCD, Phys. Lett. B, 757, 275, 10.1016/j.physletb.2016.03.077 Deur Kataev, 2005, Deep inelastic sum rules at the boundaries between perturbative and nonperturbative QCD, Mod. Phys. Lett. A, 20, 2007, 10.1142/S0217732305018165 Patrignani, 2016, Review of particle physics, Chin. Phys. C, 40 Brodsky, 2010, Nonperturbative QCD coupling and its β-function from light-front holography, Phys. Rev. D, 81, 10.1103/PhysRevD.81.096010 Brodsky, 2016, Universal effective hadron dynamics from superconformal algebra, Phys. Lett. B, 759, 171, 10.1016/j.physletb.2016.05.068 Deur, 2016, The QCD running coupling, Prog. Part. Nucl. Phys., 90, 1, 10.1016/j.ppnp.2016.04.003 Binosi Q value where the LFHQCD prediction for αg1 starts to disagree by more than 10% with the central value of αg1 obtained using conventional pQCD in the MS‾ RS, up to 4 loops for the β-series and 4th order in the Bjorken sum. The 10% prescription is chosen as typical of the general uncertainty on αg1. Likewise, the value of 1.0 GeV for the lower limit of applicability of conventional pQCD, The value of 1.3 GeV is determined as the, in the MS‾ RS is determined as the value where αg1 from conventional pQCD is 10% larger than the LFHQCD prediction. This agrees with the typical prescription that pQCD is applicable for Q>1 GeV. At high-orders some of the propagators which share the typical momentum flow of the process could be soft, leading to nonperturbative high-twist contributions. Binger, 2006, Form-factors of the gauge-invariant three-gluon vertex, Phys. Rev. D, 74, 10.1103/PhysRevD.74.054016 Celmaster, 1979, The renormalization prescription dependence of the QCD coupling constant, Phys. Rev. D, 20, 1420, 10.1103/PhysRevD.20.1420 Peter, 1997, Static quark-antiquark potential in QCD to three loops, Phys. Rev. Lett., 78, 602, 10.1103/PhysRevLett.78.602 Schroder, 1999, The static potential in QCD to two loops, Phys. Lett. B, 447, 321, 10.1016/S0370-2693(99)00010-6 Shen