Implications of the principle of maximum conformality for the QCD strong coupling
Tài liệu tham khảo
Zakharov, 1998, Renormalons as a bridge between perturbative and nonperturbative physics, Prog. Theor. Phys. Suppl., 131, 107, 10.1143/PTPS.131.107
Beneke, 1999, Renormalons, Phys. Rep., 317, 1, 10.1016/S0370-1573(98)00130-6
Brodsky, 1983, On the elimination of scale ambiguities in perturbative quantum chromodynamics, Phys. Rev. D, 28, 228, 10.1103/PhysRevD.28.228
Brodsky, 1995, Commensurate scale relations in quantum chromodynamics, Phys. Rev. D, 51, 3652, 10.1103/PhysRevD.51.3652
Brodsky, 2012, Scale setting using the extended renormalization group and the principle of maximum conformality: the QCD coupling constant at four loops, Phys. Rev. D, 85, 10.1103/PhysRevD.85.034038
Brodsky, 2012, Eliminating the renormalization scale ambiguity for top-pair production using the principle of maximum conformality, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.042002
Brodsky, 2012, Setting the renormalization scale in QCD: the principle of maximum conformality, Phys. Rev. D, 86, 10.1103/PhysRevD.86.085026
Mojaza, 2013, Systematic all-orders method to eliminate renormalization-scale and scheme ambiguities in perturbative QCD, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.192001
Brodsky, 2014, Systematic scale-setting to all orders: the principle of maximum conformality and commensurate scale relations, Phys. Rev. D, 89, 10.1103/PhysRevD.89.014027
Brodsky, 1998, Aspects of SU(Nc) gauge theories in the limit of small number of colors, Phys. Lett. B, 417, 145, 10.1016/S0370-2693(97)01209-4
Gell-Mann, 1954, Quantum electrodynamics at small distances, Phys. Rev., 95, 1300, 10.1103/PhysRev.95.1300
Wu, 2013, The renormalization scale-setting problem in QCD, Prog. Part. Nucl. Phys., 72, 44, 10.1016/j.ppnp.2013.06.001
Wu, 2015, Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review, Rep. Prog. Phys., 78, 10.1088/0034-4885/78/12/126201
Brodsky, 2012, Self-consistency requirements of the renormalization group for setting the renormalization scale, Phys. Rev. D, 86, 10.1103/PhysRevD.86.054018
Wang
Grunberg, 1980, Renormalization group improved perturbative QCD, Phys. Lett. B, 95, 70, 10.1016/0370-2693(80)90402-5
Bjorken, 1966, Applications of the chiral U(6)⊗U(6) algebra of current densities, Phys. Rev., 148, 1467, 10.1103/PhysRev.148.1467
Bjorken, 1970, Inelastic scattering of polarized leptons from polarized nucleons, Phys. Rev. D, 1, 1376, 10.1103/PhysRevD.1.1376
Brodsky, 2015, Light-front holographic QCD and emerging confinement, Phys. Rep., 584, 1, 10.1016/j.physrep.2015.05.001
Deur, 2007, Experimental determination of the effective strong coupling constant, Phys. Lett. B, 650, 244, 10.1016/j.physletb.2007.05.015
Deur, 2008, Determination of the effective strong coupling constant αs,g1(Q2) from CLAS spin structure function data, Phys. Lett. B, 665, 349, 10.1016/j.physletb.2008.06.049
Baikov, 2010, Adler function, Bjorken sum rule, and the Crewther relation to order αs4 in a general gauge theory, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.132004
Baikov, 2012, Vector correlator in massless QCD at order O(αs4) and the QED beta-function at five loop, J. High Energy Phys., 1207
Deur, 2004, Experimental determination of the evolution of the Bjorken integral at low Q2, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.212001
Deur, 2008, Experimental study of isovector spin sum rules, Phys. Rev. D, 78, 10.1103/PhysRevD.78.032001
Deur, 2014, High precision determination of the Q2 evolution of the Bjorken Sum, Phys. Rev. D, 90, 10.1103/PhysRevD.90.012009
Baikov, 2017, Five-loop running of the QCD coupling constant, Phys. Rev. Lett., 118, 10.1103/PhysRevLett.118.082002
Luthe, 2016, Towards the five-loop Beta function for a general gauge group, J. High Energy Phys., 1607
Kniehl, 2006, Strong-coupling constant with flavor thresholds at five loops in the modified minimal-subtraction scheme, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.042001
Shen
Wu, 2016, Importance of proper renormalization scale-setting for QCD testing at colliders, Front. Phys., 11, 10.1007/s11467-015-0518-5
If the Q value ensures that nf=4, e.g. Q≥mc∼1.275GeV, we get a reasonable Q3≃40Q.
Deur, 2015, Connecting the hadron mass scale to the fundamental mass scale of quantum chromodynamics, Phys. Lett. B, 750, 528, 10.1016/j.physletb.2015.09.063
Deur, 2016, On the interface between perturbative and nonperturbative QCD, Phys. Lett. B, 757, 275, 10.1016/j.physletb.2016.03.077
Deur
Kataev, 2005, Deep inelastic sum rules at the boundaries between perturbative and nonperturbative QCD, Mod. Phys. Lett. A, 20, 2007, 10.1142/S0217732305018165
Patrignani, 2016, Review of particle physics, Chin. Phys. C, 40
Brodsky, 2010, Nonperturbative QCD coupling and its β-function from light-front holography, Phys. Rev. D, 81, 10.1103/PhysRevD.81.096010
Brodsky, 2016, Universal effective hadron dynamics from superconformal algebra, Phys. Lett. B, 759, 171, 10.1016/j.physletb.2016.05.068
Deur, 2016, The QCD running coupling, Prog. Part. Nucl. Phys., 90, 1, 10.1016/j.ppnp.2016.04.003
Binosi
Q value where the LFHQCD prediction for αg1 starts to disagree by more than 10% with the central value of αg1 obtained using conventional pQCD in the MS‾ RS, up to 4 loops for the β-series and 4th order in the Bjorken sum. The 10% prescription is chosen as typical of the general uncertainty on αg1. Likewise, the value of 1.0 GeV for the lower limit of applicability of conventional pQCD, The value of 1.3 GeV is determined as the, in the MS‾ RS is determined as the value where αg1 from conventional pQCD is 10% larger than the LFHQCD prediction. This agrees with the typical prescription that pQCD is applicable for Q>1 GeV.
At high-orders some of the propagators which share the typical momentum flow of the process could be soft, leading to nonperturbative high-twist contributions.
Binger, 2006, Form-factors of the gauge-invariant three-gluon vertex, Phys. Rev. D, 74, 10.1103/PhysRevD.74.054016
Celmaster, 1979, The renormalization prescription dependence of the QCD coupling constant, Phys. Rev. D, 20, 1420, 10.1103/PhysRevD.20.1420
Peter, 1997, Static quark-antiquark potential in QCD to three loops, Phys. Rev. Lett., 78, 602, 10.1103/PhysRevLett.78.602
Schroder, 1999, The static potential in QCD to two loops, Phys. Lett. B, 447, 321, 10.1016/S0370-2693(99)00010-6
Shen