Implications of mitochondrial DNA variants in pediatric B-cell acute lymphoblastic leukemia

Ayushi Jain1, Amit Katiyar2, Ritika Singh1, Sameer Bakhshi3, Harpreet Singh2, Jayanth Kumar Palanichamy1, Archna Singh1
1Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
2Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research (ICMR), Ansari Nagar, New Delhi, 110029, India
3Department of Medical Oncology, B.R.A.I.R.C.H., All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India

Tóm tắt

Abstract Background Research on the role of variations in the mitochondrial genome in pathogenesis of acute lymphoblastic leukemia (ALL) has been unfolding at a rapid rate. Our laboratory has previously described higher number of copies of the mitochondrial genomes per cell in pediatric ALL patients as compared to the healthy controls. In the current study, we evaluated the pattern of mitochondrial genome variations in 20 de-novo pediatric B-ALL cases and seven controls. Quantitative real-time Polymerase Chain Reaction was used for estimation of mitochondrial genomes’ copy number in bone marrow samples of each ALL patient and peripheral blood samples of controls. The complete mitochondrial genomes of all samples were sequenced using the Illumina platform. Results Sequencing data analysis using multiple mitochondrial genome databases revealed 325 variants in all 27 samples, out of which 221 variants were previously known while 104 were unassigned, new variants. The 325 variants consisted of 7 loss-of-function variants, 131 synonymous variants, 75 missense variants, and 112 non-coding variants. New, missense variants (n = 21) were identified in genes encoding the electron transport chain complexes with most of them encoding ND4, ND5 of complex I. Missense and loss-of-function variants were found to be deleterious by many predictor databases of pathogenicity. MuTect2 identified true somatic variants present only in tumors between patient-sibling pairs and showed overlap with missense and loss-of-function variants. Online MtDNA-server showed heteroplasmic and homoplasmic variants in mitochondrial genome. Conclusions The data suggest that some of these variations might have a deleterious impact on the expression of mitochondrial encoded genes with a possible functional relevance in leukemia.

Từ khóa


Tài liệu tham khảo

Arora RS, Arora B (2016) Acute leukemia in children: a review of the current Indian data. South Asian J Cancer 5(3):155–160. https://doi.org/10.4103/2278-330X.187591

Basak NP, Banerjee S (2015) Mitochondrial dependency in progression of acute myeloid leukemia. Mitochondrion 21:41–48. https://doi.org/10.1016/j.mito.2015.01.006

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92. https://doi.org/10.4161/fly.19695

Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F (2019) Next-generation sequencing in acute lymphoblastic leukemia. Int J Mol Sci. https://doi.org/10.3390/ijms20122929

Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, Stefancsik R, Harsha B, Kok CY, Jia M, Jubb H, Sondka Z, Thompson S, De T, Campbell PJ (2017) COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids Res 45(D1):D777–D783. https://doi.org/10.1093/nar/gkw1121

Fuku N, Nishigaki Y, Tanaka M (2005) [Human mitochondrial genome polymorphism database (mtSNP)]. Tanpakushitsu Kakusan Koso. Protein Nucleic Acid Enzyme 50(14 Suppl):1753–1758

Fukuoh A, Cannino G, Gerards M, Buckley S, Kazancioglu S, Scialo F, Lihavainen E, Ribeiro A, Dufour E, Jacobs HT (2014) Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase. Mol Syst Biol 10:734. https://doi.org/10.15252/msb.20145117

Gammage PA, Frezza C (2019) Mitochondrial DNA: The overlooked oncogenome? BMC Biol 17(1):53. https://doi.org/10.1186/s12915-019-0668-y

Ghaffarpour M, Mahdian R, Fereidooni F, Kamalidehghan B, Moazami N, Houshmand M (2014) The mitochondrial ATPase6 gene is more susceptible to mutation than the ATPase8 gene in breast cancer patients. Cancer Cell Int 14:21. https://doi.org/10.1186/1475-2867-14-21

Grady JP, Pickett SJ, Ng YS, Alston CL, Blakely EL, Hardy SA, Feeney CL, Bright AA, Schaefer AM, Gorman GS, McNally RJ, Taylor RW, Turnbull DM, McFarland R (2018) MtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease. EMBO Mol Med 10(6):e8262. https://doi.org/10.15252/emmm.201708262

Grandhi S, Bosworth C, Maddox W, Sensiba C, Akhavanfard S, Ni Y, LaFramboise T (2017) Heteroplasmic shifts in tumor mitochondrial genomes reveal tissue-specific signals of relaxed and positive selection. Hum Mol Genet 26(15):2912–2922. https://doi.org/10.1093/hmg/ddx172

Hertweck KL, Dasgupta S (2017) The landscape of mtDNA modifications in cancer: a tale of two cities. Front Oncol 7:262. https://doi.org/10.3389/fonc.2017.00262

Hunger SP, Mullighan CG (2015) Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood 125(26):3977–3987. https://doi.org/10.1182/blood-2015-02-580043

Hunger SP, Mullighan CG (2015) Acute lymphoblastic leukemia in children. N Engl J Med 373(16):1541–1552. https://doi.org/10.1056/NEJMra1400972

Imanishi H, Hattori K, Wada R, Ishikawa K, Fukuda S, Takenaga K, Nakada K, Hayashi J (2011) Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS ONE 6(8):e23401. https://doi.org/10.1371/journal.pone.0023401

Inaba H, Azzato EM, Mullighan CG (2017) Integration of next-generation sequencing to treat acute lymphoblastic leukemia with targetable lesions: the St. Jude children’s research hospital approach. Front Pediatr 5:258. https://doi.org/10.3389/fped.2017.00258

Ingman M, Gyllensten U (2006) mtDB: human mitochondrial genome database, a resource for population genetics and medical sciences. Nucleic Acids Res 34:D749-751. https://doi.org/10.1093/nar/gkj010

Iommarini L, Kurelac I, Capristo M, Calvaruso MA, Giorgio V, Bergamini C, Ghelli A, Nanni P, De Giovanni C, Carelli V, Fato R, Lollini PL, Rugolo M, Gasparre G, Porcelli AM (2014) Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. Hum Mol Genet 23(6):1453–1466. https://doi.org/10.1093/hmg/ddt533

Jain A, Bakhshi S, Thakkar H, Gerards M, Singh A (2018) Elevated mitochondrial DNA copy numbers in pediatric acute lymphoblastic leukemia: a potential biomarker for predicting inferior survival. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.26874

Jang Y, Lim K (2018) Recent advances in mitochondria-targeted gene delivery. Molecules 23(9):2316. https://doi.org/10.3390/molecules23092316

Järviaho T, Hurme-Niiranen A, Soini HK, Niinimäki R, Möttönen M, Savolainen E-R, Hinttala R, Harila-Saari A, Uusimaa J (2018) Novel non-neutral mitochondrial DNA mutations found in childhood acute lymphoblastic leukemia. Clin Genet 93(2):275–285. https://doi.org/10.1111/cge.13100

Jiménez-Morales S, Pérez-Amado CJ, Langley E, Hidalgo-Miranda A (2018) Overview of mitochondrial germline variants and mutations in human disease: focus on breast cancer (review). Int J Oncol 53(3):923–936. https://doi.org/10.3892/ijo.2018.4468

Ju YS, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S, Ramakrishna M, Davies HR, Papaemmanuil E, Gundem G, Shlien A, Bolli N, Behjati S, Tarpey PS, Nangalia J, Massie CE, Butler AP, Teague JW, Vassiliou GS, Green AR, Du M-Q, Unnikrishnan A, Pimanda JE et al (2014) Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife. https://doi.org/10.7554/eLife.02935

Kodroń A, Ghanim M, Krawczyk KK, Stelmaszczyk-Emmel A, Tońska K, Demkow U, Bartnik E (2017) Mitochondrial DNA in pediatric leukemia patients. Acta Biochim Pol 64(1):183–187. https://doi.org/10.18388/abp.2016_1444

Koshikawa N, Akimoto M, Hayashi J-I, Nagase H, Takenaga K (2017) Association of predicted pathogenic mutations in mitochondrial ND genes with distant metastasis in NSCLC and colon cancer. Sci Rep 7(1):15535. https://doi.org/10.1038/s41598-017-15592-2

Kwok CS-N, Quah TC, Ariffin H, Tay SK-H, Yeoh AE-J (2011) Mitochondrial D-loop polymorphisms and mitochondrial DNA content in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 33(6):e239-244. https://doi.org/10.1097/MPH.0b013e31820a5ece

Larman TC, DePalma SR, Hadjipanayis AG, Cancer Genome Atlas Research Network, Protopopov A, Zhang J, Gabriel SB, Chin L, Seidman CE, Kucherlapati R, Seidman JG (2012) Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci U S A 109(35):14087–14091. https://doi.org/10.1073/pnas.1211502109

Leahy J, Spahis S, Bonneil E, Garofalo C, Grimard G, Morel S, Laverdière C, Krajinovic M, Drouin S, Delvin E, Sinnett D, Marcil V, Levy E (2018) Insight from mitochondrial functions and proteomics to understand cardiometabolic disorders in survivors of acute lymphoblastic leukemia. Metab Clin Exp 85:151–160. https://doi.org/10.1016/j.metabol.2018.03.011

Lin C-S, Lee H-T, Lee M-H, Pan S-C, Ke C-Y, Chiu AW-H, Wei Y-H (2016) Role of mitochondrial DNA copy number alteration in human renal cell carcinoma. Int J Mol Sci. https://doi.org/10.3390/ijms17060814

Lobo-Jarne T, Ugalde C (2018) Respiratory chain supercomplexes: Structures, function and biogenesis. Semin Cell Dev Biol 76:179–190. https://doi.org/10.1016/j.semcdb.2017.07.021

Malard F, Mohty M (2020) Acute lymphoblastic leukaemia. Lancet (Lond, Engl) 395(10230):1146–1162. https://doi.org/10.1016/S0140-6736(19)33018-1

Memon AA, Zöller B, Hedelius A, Wang X, Stenman E, Sundquist J, Sundquist K (2017) Quantification of mitochondrial DNA copy number in suspected cancer patients by a well optimized ddPCR method. Biomol Detect Quantif 13:32–39. https://doi.org/10.1016/j.bdq.2017.08.001

Pérez-Amado CJ, Tovar H, Gómez-Romero L, Beltrán-Anaya FO, Bautista-Piña V, Dominguez-Reyes C, Villegas-Carlos F, Tenorio-Torres A, Alfaro-Ruíz LA, Hidalgo-Miranda A, Jiménez-Morales S (2020) Mitochondrial DNA mutation analysis in breast cancer: shifting from germline heteroplasmy toward homoplasmy in tumors. Front Oncol 10:572954. https://doi.org/10.3389/fonc.2020.572954

Phillips NR, Sprouse ML, Roby RK (2014) Simultaneous quantification of mitochondrial DNA copy number and deletion ratio: a multiplex real-time PCR assay. Sci Rep 4:3887. https://doi.org/10.1038/srep03887

Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20(1):110–121. https://doi.org/10.1101/gr.097857.109

Preste R, Vitale O, Clima R, Gasparre G, Attimonelli M (2019) HmtVar: a new resource for human mitochondrial variations and pathogenicity data. Nucleic Acids Res 47(Database issue):D1202–D1210. https://doi.org/10.1093/nar/gky1024

Reznik E, Wang Q, La K, Schultz N, Sander C (2017) Mitochondrial respiratory gene expression is suppressed in many cancers. Elife. https://doi.org/10.7554/eLife.21592

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, ACMG Laboratory Quality Assurance Committee (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and Genomics and the association for molecular pathology. Genet Med Off J Am Coll Med Genet 17(5):405–424. https://doi.org/10.1038/gim.2015.30

Riley LG, Cowley MJ, Gayevskiy V, Minoche AE, Puttick C, Thorburn DR, Rius R, Compton AG, Menezes MJ, Bhattacharya K, Coman D, Ellaway C, Alexander IE, Adams L, Kava M, Robinson J, Sue CM, Balasubramaniam S, Christodoulou J (2020) The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease. Genet Med Off J Am Coll Med Genet 22(7):1254–1261. https://doi.org/10.1038/s41436-020-0793-6

Roberts KG (2018) Genetics and prognosis of ALL in children vs adults. Hematol Am Soc Hematol Educ Program 2018(1):137–145

Severson EA, Vergilio J-A, Gay LM, Daniel S, Hemmerich AC, Elvin JA, Britt N, Nahas M, Cohen MB, Brown C, Sathyan P, Rankin A, Miller V, Ross JS, Ramkissoon SH (2019) Genomic landscape of adult and pediatric BCR-ABL1-Like B-lymphoblastic leukemia using parallel DNA and RNA sequencing. Oncologist 24(3):372–374. https://doi.org/10.1634/theoncologist.2018-0272

Shen L, Wei J, Chen T, He J, Qu J, He X, Jiang L, Qu Y, Fang H, Chen G, Lu J, Bai Y (2011) Evaluating mitochondrial DNA in patients with breast cancer and benign breast disease. J Cancer Res Clin Oncol 137(4):669–675. https://doi.org/10.1007/s00432-010-0912-x

Sherry ST, Ward M, Sirotkin K (1999) DbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res 9(8):677–679

Sobenin IA, Zhelankin AV, Khasanova ZB, Sinyov VV, Medvedeva LV, Sagaidak MO, Makeev VJ, Kolmychkova KI, Smirnova AS, Sukhorukov VN, Postnov AY, Grechko AV, Orekhov AN (2019) Heteroplasmic variants of mitochondrial DNA in atherosclerotic lesions of human aortic intima. Biomolecules 9(9):E455. https://doi.org/10.3390/biom9090455

Sriskanthadevan S, Jeyaraju DV, Chung TE, Prabha S, Xu W, Skrtic M, Jhas B, Hurren R, Gronda M, Wang X, Jitkova Y, Sukhai MA, Lin F-H, Maclean N, Laister R, Goard CA, Mullen PJ, Xie S, Penn LZ et al (2015) AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood 125(13):2120–2130. https://doi.org/10.1182/blood-2014-08-594408

Stewart JB, Chinnery PF (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16(9):530–542. https://doi.org/10.1038/nrg3966

Tengku Baharudin N, Jaafar H, Zainuddin Z (2012) Association of mitochondrial DNA 10398 polymorphism in invasive breast cancer in malay population of peninsular Malaysia. Malays J Med Sci MJMS 19(1):36–42

Triska P, Kaneva K, Merkurjev D, Sohail N, Falk MJ, Triche TJ, Biegel JA, Gai X (2019) Landscape of germline and somatic mitochondrial DNA mutations in pediatric malignancies. Can Res 79(7):1318–1330. https://doi.org/10.1158/0008-5472.CAN-18-2220

van Gisbergen MW, Voets AM, Starmans MHW, de Coo IFM, Yadak R, Hoffmann RF, Boutros PC, Smeets HJM, Dubois L, Lambin P (2015) How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutat Res Rev Mutat Res 764:16–30. https://doi.org/10.1016/j.mrrev.2015.01.001

Wang J, Schmitt ES, Landsverk ML, Zhang VW, Li F-Y, Graham BH, Craigen WJ, Wong L-JC (2012) An integrated approach for classifying mitochondrial DNA variants: one clinical diagnostic laboratory’s experience. Genet Med Off J Am Coll Med Genet 14(6):620–626. https://doi.org/10.1038/gim.2012.4

Wang K, Li M, Hakonarson H (2010) ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. https://doi.org/10.1093/nar/gkq603

Weissensteiner H, Forer L, Fuchsberger C, Schöpf B, Kloss-Brandstätter A, Specht G, Kronenberg F, Schönherr S (2016) mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud. Nucleic Acids Res 44(W1):W64-69. https://doi.org/10.1093/nar/gkw247

Yacoub HA, Mahmoud WM, El-Baz HAE-D, Eid OM, ELfayoumi, R. I., Elhamidy, S. M., & Mahmoud, M. M. (2014) Novel mutations in the displacement loop of mitochondrial DNA are associated with acute lymphoblastic leukemia: a genetic sequencing study. Asian Paci J Cancer Prev APJCP 15(21):9283–9289. https://doi.org/10.7314/apjcp.2014.15.21.9283

Yacoub HA, Mahmoud WM, El-Baz HA-EE-D, Eid OM, El-Fayoumi RI, Mahmoud MM, Harakeh S, Abuzinadah OH (2014) New haplotypes of the ATP synthase subunit 6 gene of mitochondrial DNA are associated with acute lymphoblastic leukemia in Saudi Arabia. Asian Pac J Cancer Prev APJCP 15(23):10433–10438. https://doi.org/10.7314/apjcp.2014.15.23.10433

Yuan Y, Ju YS, Kim Y, Li J, Wang Y, Yoon CJ, Yang Y, Martincorena I, Creighton CJ, Weinstein JN, Xu Y, Han L, Kim H-L, Nakagawa H, Park K, Campbell PJ, Liang H, PCAWG Consortium (2020) Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat Genet 52(3):342–352. https://doi.org/10.1038/s41588-019-0557-x

Zielonka J, Kalyanaraman B (2008) “ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis”—a critical commentary. Free Radical Biol Med 45(9):1217–1219. https://doi.org/10.1016/j.freeradbiomed.2008.07.025