Implementing the Nelder-Mead simplex algorithm with adaptive parameters
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andrei, N.: Convex functions. Adv. Model. Optim. 9(2), 257–267 (2007)
Byatt, D.: Convergent variants of the Nelder-Mead algorithm. Master’s Thesis, University of Canterbury, Christchurch, New Zealand (2000)
Byrd, R., Nocedal, J., Zhu, C.: Towards a discrete Newton method with memory for large-scale optimization. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Applications. Plenum, New York (1996)
Dennis, J.E. Jr., Torczon, V.: Direct search methods on parallel machines. SIAM J. Optim. 1, 448–474 (1991)
Dennis, J.E. Jr., Woods, D.J.: Optimization on microcomputers: The Nelder-Mead simplex algorithm. In: Wouk, A. (ed.) New Computing Environments: Microcomputers in Large-Scale Scientific Computing. SIAM, Philadelphia (1987)
Han, L., Neumann, M.: Effect of dimensionality on the Nelder-Mead simplex method. Optim. Methods Softw. 21(1), 1–16 (2006)
Kelley, C.T.: Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient decrease condition. SIAM J. Optim. 10, 43–55 (2000)
Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)
Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.: Convergence properties of the Nelder-Mead simplex algorithm in low dimensions. SIAM J. Optim. 9, 112–147 (1998)
Math Works: MATLAB 6, Release 12, The Math Works, Natick, MA (2000)
Mckinnon, K.I.M.: Convergence of the Nelder-Mead simplex method to a nonstationary point. SIAM J. Optim. 9, 148–158 (1998)
Moré, J.J., Garbow, B.S., Hillstrom, B.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)
Price, C.J., Coope, I.D., Byatt, D.: A convergent variant of the Nelder-Mead algorithm. JOTA 113, 5–19 (2002)
Torczon, V.: Multi-directional Search: A Direct Search Algorithm for Parallel Machines. Ph.D. Thesis, Rice University, TX (1989)
Tseng, P.: Fortified-descent simplicial search method: a general approach. SIAM J. Optim. 10, 269–288 (2000)
Woods, D.J.: An Iterative Approach for Solving Multi-objective Optimization Problems. Ph.D. Thesis, Rice University, TX (1985)
Wright, M.H.: Direct search methods: Once scorned, now respectable. In: Griffiths, D.F., Watson, G.A. (eds.) Numerical Analysis 1995: Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis, pp. 191–208. Addison Wesley Longman, Harlow (1996)
Wright, M.H.: N&M@42: Nelder-Mead at 42″, a talk given at University of Waterloo, June 2007