Implementation of a state-to-state analytical framework for the calculation of expansion tube flow properties

Christopher M. James1, David Gildfind1, Steven W. Lewis1, Richard G. Morgan1, Fabian Zander1
1The University of Queensland, St. Lucia, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Morgan, R.: A review of the use of expansion tubes for creating superorbital flows. In: 35th AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, USA, January 6–10, AIAA Paper 1997-279 (1997). doi: 10.2514/6.1997-279

Leibowitz, L.: Attainment of Jupiter entry shock velocities. AIAA J. 13, 403–405 (1975). doi: 10.2514/3.49715

Morgan, R.: Free piston driven expansion tubes. In: Ben-Dor, G. (ed.) A Handbook of Shock Waves, Chap. 4.3, vol. 1, pp. 603–622. Academic Press, New York (2001). doi: 10.1016/B978-012086430-0/50014-2

Park, C.: Thermochemical relaxation in shock tunnels. J. Thermophys. Heat Transf. 20(4), 689–698 (2006). doi: 10.2514/1.22719

Resler, E., Bloxsom, D.: Very High Mach Number Principles by Unsteady Flow Principle. Cornell University Graduate School of Aerodynamic Engineering, Ithaca (1952)

Trimpi, R.: A preliminary theoretical study of the expansion tube, a new device for producing high-enthalpy short-duration hypersonic gas flows. NASA TR R-133, NASA Langley Research Center, Langley Station, Hampton, VA, USA (1962)

Trimpi, R., Callis, L.: A perfect-gas analysis of the expansion tunnel, a modification to the expansion tube. NASA TR R-223, NASA Langley Research Center, Langley Station, Hampton, VA, USA (1965)

Trimpi, R.: A theoretical investigation of simulation in expansion tubes and tunnels. NASA TR R-243, NASA Langley Research Center, Langley Station, Hampton, VA, USA (1966)

Norfleet, G., Loper, F.: A theoretical real-gas analysis of the expansion tunnel. Technical Report 66-71, Arnold Engineering Development Center, Arnold Air Force Station, Tullahoma, TN, USA (1966)

Jones, J.: Some performance characteristics of the LRC 3 and 3/4 inch pilot expansion tube using an unheated hydrogen driver. In: Proceedings of the Fourth Hypervelocity Techniques Symposium: Advanced Experimental Techniques for Study of Hypervelocity Flight, pp. 7–26. Arnold Engineering Development Center, Arnold Air Force Station, Tullahoma, TN, USA, November 15–16 (1965)

Givens, J., Page, W., Reynolds, R.: Evaluation of flow properties in a combustion-driven expansion tube operating at 7.5 km/sec. In: Proceedings of the Fourth Hypervelocity Techniques Symposium: Advanced Experimental Techniques for Study of Hypervelocity Flight, pp. 27–48. Arnold Engineering Development Center, Arnold Air Force Station, Tullahoma, TN, USA, November 15–16 (1965)

Norfleet, G., Lacey Jr, J., Whitfield, J.: Results of an experimental investigation of the performance of an expansion tube. In: Proceedings of the Fourth Hypervelocity Techniques Symposium: Advanced Experimental Techniques for Study of Hypervelocity Flight, pp. 49–110. Arnold Engineering Development Center, Arnold Air Force Station, Tullahoma, TN, USA, November 15–16 (1965)

Spurk, J.: Design, operation, and preliminary results of the BRL expansion tube. In: Proceedings of the Fourth Hypervelocity Techniques Symposium: Advanced Experimental Techniques for Study of Hypervelocity Flight, pp. 111–144. Arnold Engineering Development Center, Arnold Air Force Station, Tullahoma, TN, USA, November 15–16 (1965)

Jones, J., Moore, J.: Exploratory study of performance of the Langley pilot model expansion tube with a hydrogen driver. Technical Note D-3421, NASA Langley Research Center, Langley Station, Hampton, VA, USA (1966)

Miller, C.G., Jones, J.: Development and performance of the NASA Langley Research Center expansion tube/tunnel, a hypersonic-hypervelocity real-gas facility. In: The 14th International Symposium on Shock Waves, Sydney, NSW, Australia (1983)

Moore, J.: description and operating performance of a parallel-rail electric-arc system with helium driver gas for the Langley 6-inch expansion tube. NASA TM X-3448, NASA Langley Research Center, Langley Station, Hampton, VA, USA (1976)

Creel, T.: Experimental performance of an internal resistance heater for Langley 6-inch expansion tube driver. NASA TN D-7070, NASA Langley Research Center, Langley Station, Hampton, VA, USA (1972)

Miller, C.G., Jones, J.: Incident shock-wave characteristics in air, argon, carbon dioxide, and helium in a shock tube with unheated helium driver. NASA TN-8099, NASA Langley Research Center, Langley, VA, USA (1975)

Miller, C., Moore, J.: Flow-establishment times for blunt bodies in an expansion tube. AIAA J. 13(12), 1676–1678 (1975). doi: 10.2514/3.7048

Shinn, J.: Comparison of predicted and experimental real-gas pressure distributions on space shuttle orbiter nose for shuttle entry air data system. NASA TP-1627, NASA Langley Research Center, Langley, VA, USA (1980)

Tamagno, J., Bakos, R., Pulsonetti, M., Erdos, J.: Hypervelocity real gas capabilities of GASL’s expansion tube (HYPULSE) facility. In: 16th AIAA Aerodynamic Ground Testing Conference, Seattle, WA, USA, June 18–20, AIAA Paper 1990-1390 (1990). doi: 10.2514/6.1990-1390

Stringer, I.: “TQ” free piston expansion tube-design and operation. Report 4/1989, Department of Mechanical Engineering, The University of Queensland, Brisbane, Australia (1989)

Paull, A., Stalker, R.J., Stringer, I.: Experiments on an expansion tube with a free piston driver. In: 15th AIAA Aerodynamic Testing Conference, San Diego, CA, USA, May 18–20, AIAA Paper 1988-2018 (1988). doi: 10.2514/6.1988-2018

Paull, A., Stalker, R.J.: Test flow disturbances in an expansion tube. J. Fluid Mech. 245(1), 493–521 (1992). doi: 10.1017/S0022112092000569

Gildfind, D.E., Morgan, R.G., Jacobs, P.A.: Expansion tubes in Australia. In: Igra, O., Seiler, F. (eds.) Experimental Methods of Shock Wave Research. Shock Wave Science and Technology Reference Library, vol. 9, pp. 399–431. Springer, Cham (2016). doi: 10.1007/978-3-319-23745-9_13

Sasoh, A., Ohnishi, Y., Ramjaun, D., Takayama, K., Otsu, H., Abe, T.: Effective test time evaluation in high-enthalpy expansion tube. AIAA J. 39(11), 2141–2147 (2001). doi: 10.2514/2.1210

Ben-Yakar, A., Hanson, R.K.: Characterization of expansion tube flows for hypervelocity combustion studies. J. Propuls. Power 18(4), 943–952 (2002). doi: 10.2514/2.6021

Dufrene, A., Sharma, M., Austin, J.M.: Design and characterization of a hypervelocity expansion tube facility. J. Propuls. Power 23(6), 1185–1193 (2007). doi: 10.2514/1.30349

Dufrene, A., MacLean, M., Parker, R., Wadhams, T., Holden, M.: Characterization of the new LENS expansion tunnel facility. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, January 4–7, AIAA Paper 2010-1564 (2010). doi: 10.2514/6.2010-1564

Abul-Huda, Y., Gamba, M.: Design and characterization of the Michigan hypersonic expansion tube facility (MHExT). In: 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, USA, January 5–9, AIAA Paper 2015-1785 (2015). doi: 10.2514/6.2015-1785

Jiang, Z., Wu, B., Gao, Y., Zhao, W., Hu, Z.: Development of the detonation-driven expansion tube for orbital speed experiments. Sci. China Technol. Sci. 58(4), 695–700 (2015). doi: 10.1007/s11431-014-5756-1

McGilvray, M., Doherty, L., Morgan, R., Gildfind, D.: T6: The Oxford University Stalker tunnel. In: 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland, AIAA Paper 2015-3545 (2015). doi: 10.2514/6.2015-3545

Neely, A., Morgan, R.: The superorbital expansion tube concept, experiment and analysis. Aeronaut. J. 98, 97–105 (1994). doi: 10.1017/S0001924000050107

Jacobs, P.: L1d: A computer program for the simulation of transient-flow facilities. Report 1/99, Department of Mechanical Engineering, University of Queensland, Australia (1999)

Jacobs, P.: Quasi-one-dimensional modeling of a free-piston shock tunnel. AIAA J. 32, 137–145 (1994). doi: 10.2514/3.11961

Mirels, H.: Test time in low-pressure shock tubes. Phys. Fluids 6, 1201–1214 (1963). doi: 10.1063/1.1706887

Mirels, H.: Shock tube test time limitation due to turbulent-wall boundary layer. AIAA J. 2, 84–93 (1964). doi: 10.2514/3.2218

Mirels, H., Mullen, J.F.: Small perturbation theory for shock-tube attenuation and nonuniformity. Phys. Fluids 7(8), 1208–1218 (1964). doi: 10.1063/1.1711363

Jacobs, P., Gollan, R., Potter, D., Zander, F., Gildfind, D., Blyton, P., Chan, W., Doherty, L.: Estimation of high-enthalpy flow conditions for simple shock and expansion processes using the ESTCj program and library. Mechanical Engineering Report 2011/02, Department of Mechanical Engineering, University of Queensland, Australia (2011)

James, C., Gildfind, D., Morgan, R., Jacobs, P., Zander, F.: Designing and simulating high enthalpy expansion tube conditions. In: 2013 Asia-Pacific International Symposium on Aerospace Technology, Takamatsu, Japan (2013)

Gordon, G., McBride, B.: Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis. NASA-RP-1311, NASA Lewis Research Center, Cleveland (1994)

McBride, B., Gordon, G.: Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. Users Manual and Program Description. NASA-RP-1311, NASA Lewis Research Center, Cleveland (1996)

Jacobs, P., Gollan, R.: The compressible-flow CFD project. http://www.mech.uq.edu.au/cfcfd/ (2017). Accessed 12 May 2017

Morgan, R., McIntyre, T., Buttsworth, D., Jacobs, P., Potter, D., Brandis, A., Gollan, R., Jacobs, C., Capra, B., McGilvray, M., Eichmann, T.: Impulse facilities for the simulation of hypersonic radiating flows. In: 38th AIAA Fluid Dynamics Conference and Exhibit, Seattle, WA, USA, June 23–26, AIAA Paper 2008-4270 (2008). doi: 10.2514/6.2008-4270

Gildfind, D., James, C., Toniato, P., Morgan, R.: Performance considerations for expansion tube operation with a shock-heated secondary driver. J. Fluid Mech. 777, 364–407 (2015). doi: 10.1017/jfm.2015.349

Fahy, E., Gollan, R., Buttsworth, D., Jacobs, P., Morgan, R.: Experimental and computational fluid dynamics studies of superorbital earth re-entry. In: 46th AIAA Thermophysics Conference, Washington, DC, USA, June 13–17, AIAA Paper 2016-3532 (2016). doi: 10.2514/6.2016-3532

Sheikh, U., Morgan, R., McIntyre, T.: Vacuum ultraviolet spectral measurements for superorbital earth entry in X2 expansion tube. AIAA J. 53(12), 3589–3602 (2015). doi: 10.2514/1.J054027

Wei, H., Morgan, R., McIntyre, T.: Experimental and numerical investigation of air radiation in superorbital expanding flow. In: 47th AIAA Thermophysics Conference, Denver, CO, USA, June 5–9, AIAA Paper 2017-453 (2017). doi: 10.2514/6.2017-453

Eichmann, T.: Radiation measurements in a simulated mars atmosphere. Ph.D. Thesis, University of Queensland, St. Lucia, Australia (2012)

Gu, S., Morgan, R., McIntyre, T.: Study of afterbody radiation during mars entry in an expansion tube. In: AIAA SciTech 2017 Conference, Grapevine, TX, USA, January 9–13, AIAA Paper 2017-0212 (2017). doi: 10.2514/6.2017-0212

Porat, H.: Measurement of radiative heat transfer in simulated Titan and Mars atmospheres in expansion tubes. Ph.D. Thesis, The University of Queensland, St. Lucia, Australia (2016). doi: 10.14264/uql.2016.127

de Crombrugghe de Looringhe, G.: On binary scaling and ground-to-flight extrapolation in high-enthalpy facilities. Ph.D. Thesis, University of Queensland, St. Lucia, Australia (2017). doi: 10.14264/uql.2017.456

James, C., Gildfind, D., Morgan, R., Lewis, S., McIntyre, T.: Experimentally simulating gas giant entry in an expansion tube. In: 21th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Xiamen, China, March 6–9, AIAA Paper 2017-2152 (2017). doi: 10.2514/6.2017-2152

Zander, F., Morgan, R., Sheikh, U., Buttsworth, D., Teakle, P.: Hot-wall reentry testing in hypersonic impulse facilities. AIAA J. 51, 476–484 (2013). doi: 10.2514/1.J051867

Lewis, S.W., Morgan, R.G., McIntyre, T.J., Alba, C.R., Greendyke, R.G.: Expansion tunnel experiments of earth reentry flow with surface ablation. J. Spacecr. Rockets 53, 887–899 (2016). doi: 10.2514/1.A33267

Lewis, S.W., James, C., Morgan, R.G., McIntyre, T.J., Alba, C.R., Greendyke, R.G.: Carbon ablative shock-layer radiation with high surface temperatures. J. Thermophys. Heat Transf. 31, 193–204 (2017). doi: 10.2514/1.T4902

Lewis, S.W., James, C., Ravichandran, R., Morgan, R.G., McIntyre, T.J.: Carbon ablation in hypervelocity air and nitrogen shock layers. J. Thermophys. Heat Transf. (2017, under review)

Stalker, R.: Use of argon in a free piston shock tunnel. In: AIAA Plasmadynamics Conference, Monterey, CA, USA, March 2–4, AIAA Paper 1966-169 (1966). doi: 10.2514/6.1966-169

Stalker, R.: A study of the free-piston shock tunnel. AIAA J. 5(12), 2160–2165 (1967). doi: 10.2514/3.4402

Itoh, K., Ueda, S., Komuro, T., Sato, K., Takahashi, M., Miyajima, H., Tanno, H., Muramoto, H.: Improvement of a free piston driver for a high-enthalpy shock tunnel. Shock Waves 8, 215–233 (1998). doi: 10.1007/s001930050115

Tanno, H., Itoh, K., Komuro, T., Sato, K.: Experimental study on the tuned operation of a free piston driver. Shock Waves 10(1), 1–7 (2000). doi: 10.1007/s001930050174

Gildfind, D., Morgan, R., McGilvray, M., Jacobs, P., Stalker, R., Eichmann, T.: Free-piston driver optimisation for simulation of high mach number scramjet flow conditions. Shock Waves 21, 559–572 (2011). doi: 10.1007/s00193-011-0336-9

Gildfind, D.: Development of high total pressure scramjet flows conditions using the X2 expansion tube. Ph.D. Thesis, University of Queensland, St. Lucia, Australia (2012)

Gildfind, D., James, C., Morgan, R.: Free-piston driver performance characterisation using experimental shock speeds through helium. Shock Waves 25, 169–176 (2015). doi: 10.1007/s00193-015-0553-8

Morgan, R., Stalker, R.: Double diaphragm driven free piston expansion tube. In: The 18th International Symposium on Shock Waves, Sendai, Japan, July 21–26 (1991)

Kendall, M., Morgan, R., Petrie-Repar, P.: A study of free piston double diaphragm drivers for expansion tubes. In: 35th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, Jan 6–10, AIAA Paper 1997-985 (1997). doi: 10.2514/6.1997-985

Roberts, G., Kendall, M., Morgan, R.: Shock diaphragm interaction in expansion tubes. In: Proceedings of the 21st International Symposium on Shock Waves, Great Keppel Island, QLD, Australia, July 20–25 (1997)

Bakos, R.J., Morgan, R.G.: Chemical recombination in an expansion tube. AIAA J. 32(6), 1316–1319 (1994). doi: 10.2514/3.12135

Petrie-Repar, P.: Numerical simulation of diaphragm rupture. Ph.D. Thesis, University of Queensland, St. Lucia, Australia (1997)

Wegener, M., Sutcliffe, M., Morgan, R.: Optical study of a light diaphragm rupture process in an expansion tube. Shock Waves 10(3), 167–178 (2000). doi: 10.1007/s001930050003

Furukawa, T., Aochi, T., Sasoh, A.: Expansion tube operation with thin secondary diaphragm. AIAA J. 45(1), 214–217 (2007). doi: 10.2514/1.23846

Haggard, K.: Free-stream temperature, density, and pressure measurements in an expansion tube flows. NASA-TN-D-7273, Nasa Langley Research Center, Langley, VA, USA (1973)

Wilson, G.: Time-dependent quasi-one-dimensional simulations of high enthalpy pulse facilities. In: Fourth AIAA International Aerospace Planes Conference, Orlando, FL, USA, December 1–4, AIAA Paper 1992-5096 (1992). doi: 10.2514/6.1992-5096

Roberts, G., Morgan, R., Stalker, R.: The effect of diaphragm inertia on expansion tubes. In: The 13th International Symposium on Shock Waves, Marseille, France, July 26–30 (1993)

Scott, M.: Development and modelling of expansion tubes. Ph.D. Thesis, University of Queensland, St. Lucia, Australia (2006)

Taylor, G.I., Maccoll, J.W.: The air pressure on a cone moving at high speeds. I. Proc. R. Soc. Lond. Ser. A 139(838), 278–297 (1933). doi: 10.1098/rspa.1933.0017

Taylor, G.I., Maccoll, J.W.: The air pressure on a cone moving at high speeds. II. Proc. R. Soc. Lond. Ser. A 139(838), 298–311 (1933). doi: 10.1098/rspa.1933.0018

Gildfind, D.E., Morgan, R.G., Jacobs, P.A., McGilvray, M.: Production of high-Mach-number scramjet flow conditions in an expansion tube. AIAA J. 52(1), 162–177 (2014). doi: 10.2514/1.J052383

Gu, S.: Personal communication (2015)

Jacobs, P., Gollan, R.: Pitot. http://cfcfd.mechmining.uq.edu.au/pitot.html (2017). Accessed 12 May 2017

PCB Piezotronics, Inc.: Model 112A22 High Resolution ICP Pressure Probe, 50 psi, 100 mV/psi, $$0.218^{\prime \prime }$$ Dia. Installation and Operating Manual. PCB Piezotronics, Inc., Depew (2013)