Implementation of a generalized actuator line model for wind turbine parameterization in the Weather Research and Forecasting model

Nikola Marjanovic1,2, Jeffrey D. Mirocha1, Branko Kosović3, Julie K. Lundquist4,5, Fotini Katopodes Chow2
1Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory 2 , PO Box 808, L-103, Livermore, California 94551, USA
2Department of Civil and Environmental Engineering, University of California, Berkeley 1 , MC 1710, Berkeley, California 94720-1710, USA
3Research Applications Laboratory, Weather Systems and Assessment Program, University Corporation for Atmospheric Research 3 , PO Box 3000, Boulder, Colorado 80307, USA
4Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder 4 , Campus Box 311, Boulder, Colorado 80309, USA
5National Renewable Energy Laboratory 5 , 15013 Denver West Parkway, Golden, Colorado 80401, USA

Tóm tắt

A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulations show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. The GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.

Từ khóa


Tài liệu tham khảo

1994, Wind Eng., 18, 139

1988, Atmos. Environ. (1967), 22, 803, 10.1016/0004-6981(88)90020-0

1999, J. Wind Eng. Ind. Aerodyn., 80, 121, 10.1016/S0167-6105(98)00194-9

1999, J. Wind Eng. Ind. Aerodyn., 80, 169, 10.1016/S0167-6105(98)00126-3

2010, J. Atmos. Oceanic Technol., 27, 1302, 10.1175/2010JTECHA1398.1

1990, Sol. Energy, 45, 265, 10.1016/0038-092X(90)90012-2

2012, J. Turbul., 13, N14, 10.1080/14685248.2012.668191

2012, Wind Energy, 15, 305, 10.1002/we.469

2012, J. Atmos. Oceanic Technol., 29, 765, 10.1175/JTECH-D-12-00039.1

2013, J. Atmos. Oceanic Technol., 30, 2554, 10.1175/JTECH-D-12-00108.1

2014, J. Atmos. Oceanic Technol., 31, 765, 10.1175/JTECH-D-13-00104.1

N. Kelley, B. Jonkman, G. Scott, J. Bialasiewicz, and L. Redmond, “Impact of coherent turbulence on wind turbine aeroelastic response and its simulation,” Paper No. NREL/CP-500-38074, National Renewable Energy Laboratory (NREL), Golden, CO (2005).

2009, Bull. Am. Meteorol. Soc., 90, 535, 10.1175/2008BAMS2729.1

2012, Wind Energy, 15, 525, 10.1002/we.483

2012, Environ. Res. Lett., 7, 014005, 10.1088/1748-9326/7/1/014005

2012, Environ. Res. Lett., 7, 034035, 10.1088/1748-9326/7/3/034035

2012, Wind Energy, 15, 183, 10.1002/we.512

2015, J. Wind Eng. Ind. Aerodyn., 144, 146, 10.1016/j.jweia.2014.12.011

2011, Wind Energy, 14, 799, 10.1002/we.458

2014, J. Wind Eng. Ind. Aerodyn., 133, 1, 10.1016/j.jweia.2014.07.002

2001, Wind Eng., 25, 263, 10.1260/030952401760177837

2005, J. Wind Eng. Ind. Aerodyn., 93, 797, 10.1016/j.jweia.2005.08.001

2011, J. Wind Eng. Ind. Aerodyn., 99, 320, 10.1016/j.jweia.2011.01.023

2013, Using mesoscale weather model output as boundary conditions for atmospheric large-eddy simulations and wind-plant aerodynamic simulations (presentation)

H. Gopalan, D. Chandar, C. Gundling, J. Sitaraman, W. Henshaw, J. Mirocha, S. Wharton, W. Miller, J. Newman, and P. Klein, “Evaluation of the effect of realistic and synthetic inflow on the power and loading pattern of wind turbines,” Paper No. LLNL-PROC-645760, Lawrence Livermore National Laboratory (LLNL), Livermore, CA (2013).

2008, 113

2012, Mon. Weather Rev., 140, 3017, 10.1175/MWR-D-11-00352.1

2014, J. Renewable Sustainable Energy, 6, 013104, 10.1063/1.4861061

1926, A General Theory of the Autogyro

S. van der Pijl, “Numerical modelling of wind farm aerodynamics,” Technical Report ECN Internal, Energy Research Centre of the Netherlands (2007).

2015, J. Renewable Sustainable Energy, 7, 043143, 10.1063/1.4928873

2014, J. Renewable Sustainable Energy, 6, 033137, 10.1063/1.4885111

2003, Prog. Aerosp. Sci., 39, 467, 10.1016/S0376-0421(03)00078-2

2011, J. Fluid Mech., 682, 1, 10.1017/jfm.2011.277

2002, J. Fluids Eng., 124, 393, 10.1115/1.1471361

2007, J. Phys.: Conf. Ser., 75, 012063, 10.1088/1742-6596/75/1/012063

2009, Wind Energy, 12, 63, 10.1002/we.285

2015, Atmos. Meas. Tech., 8, 907, 10.5194/amt-8-907-2015

2013, Philos. Trans. R. Soc. A, 371, 20120421, 10.1098/rsta.2012.0421

2010, Wind Energy, 13, 86, 10.1002/we.345

2012, AIAA Paper 2012-0900, 10.2514/6.2012-900

2011, J. Wind Eng. Ind. Aerodyn., 99, 154, 10.1016/j.jweia.2011.01.011

2013, Bull. Am. Meteorol. Soc., 94, 655, 10.1175/BAMS-D-11-00240.1

2013, Boundary Layer Meteorol., 149, 85, 10.1007/s10546-013-9834-x

2014, Agric. Forest Meteorol., 194, 175, 10.1016/j.agrformet.2014.03.023

1963, Mon. Weather Rev., 91, 99, 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

1967

1997, J. Fluid Mech., 336, 151, 10.1017/S0022112096004697

2000, J. Atmos. Sci., 57, 1052, 10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2

1954, Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163

2008, Acta Geophys., 56, 88, 10.2478/s11600-007-0038-y

2010, Phys. Fluids, 22, 021303, 10.1063/1.3319073

2013, Boundary Layer Meteorol., 146, 161, 10.1007/s10546-012-9751-4

2012, Energies, 5, 5340, 10.3390/en5125340

2013, Parameter Estimation and Inverse Problems

1993, IEEE Trans. Geosci. Remote Sens., 31, 16, 10.1109/36.210440

2014, J. Fluid Mech., 744, 376, 10.1017/jfm.2014.82

R. Mikkelsen, “Actuator disc methods applied to wind turbines,” Ph.D. thesis (Technical University of Denmark, 2003).

1998, Wind Energy, 1, 73, 10.1002/(SICI)1099-1824(199812)1:2<73::AID-WE12>3.0.CO;2-L

1996, 109

2011, Boundary Layer Meteorol., 138, 345, 10.1007/s10546-010-9569-x