Implantable microdevices for treating brain tumors

Device - Tập 1 - Trang 100068 - 2023
Alexander G. Yearley1,2, Ruchit V. Patel1,2, Sarah E. Blitz1,2, Sarah Park3, Alexander M. Madinger4, Jason Li4, Benjamin R. Johnston2, Pier Paolo Peruzzi2, SeungHo Lee3,5, Shriya S. Srinivasan6, Joshua D. Bernstock2,4
1Harvard Medical School, Boston, MA 02115, USA
2Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
3Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
5Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
6John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA 02138, USA

Tài liệu tham khảo

Ostrom, 2020, CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017, Neuro Oncol., 22, iv1, 10.1093/neuonc/noaa200 2022 Poon, 2020, Longer-term (≥ 2 years) survival in patients with glioblastoma in population-based studies pre- and post-2005: a systematic review and meta-analysis, Sci. Rep., 10, 10.1038/s41598-020-68011-4 Stupp, 2005, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N. Engl. J. Med., 352, 987, 10.1056/NEJMoa043330 Rong, 2022, Emerging therapies for glioblastoma: current state and future directions, J. Exp. Clin. Cancer Res., 41, 142, 10.1186/s13046-022-02349-7 Rominiyi, 2021, Tumour treating fields therapy for glioblastoma: current advances and future directions, Br. J. Cancer, 124, 697, 10.1038/s41416-020-01136-5 Stupp, 2017, Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial, JAMA, 318, 2306, 10.1001/jama.2017.18718 Stupp, 2015, Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial, JAMA, 314, 2535, 10.1001/jama.2015.16669 Shergalis, 2018, Current Challenges and Opportunities in Treating Glioblastoma, Pharmacol. Rev., 70, 412, 10.1124/pr.117.014944 Reardon, 2013, A phase I/II trial of pazopanib in combination with lapatinib in adult patients with relapsed malignant glioma, Clin. Cancer Res., 19, 900, 10.1158/1078-0432.CCR-12-1707 Wen, 2020, Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions, Neuro Oncol., 22, 1073, 10.1093/neuonc/noaa106 Bastiancich, 2021, Rationally designed drug delivery systems for the local treatment of resected glioblastoma, Adv. Drug Deliv. Rev., 177, 10.1016/j.addr.2021.113951 Laquintana, 2009, New strategies to deliver anticancer drugs to brain tumors, Expet Opin. Drug Deliv., 6, 1017, 10.1517/17425240903167942 Westphal, 2003, A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma, Neuro Oncol., 5, 79, 10.1093/neuonc/5.2.79 Brem, 2007, Local delivery of temozolomide by biodegradable polymers is superior to oral administration in a rodent glioma model, Cancer Chemother. Pharmacol., 60, 643, 10.1007/s00280-006-0407-2 Valtonen, 1997, Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study, Neurosurgery, 41, 44, 10.1097/00006123-199707000-00011 Wu, 2022, Implantable Polyurethane Scaffolds Loading with PEG-Paclitaxel Conjugates for the Treatment of Glioblastoma Multiforme, Chin. J. Polym. Sci., 40, 491, 10.1007/s10118-022-2695-3 Zhao, 2019, A Meta-Analysis of Survival Outcomes Following Reoperation in Recurrent Glioblastoma: Time to Consider the Timing of Reoperation, Front. Neurol., 10, 286, 10.3389/fneur.2019.00286 Chaichana, 2011, The efficacy of carmustine wafers for older patients with glioblastoma multiforme: prolonging survival, Neurol. Res., 33, 759, 10.1179/1743132811Y.0000000006 Affronti, 2009, Overall survival of newly diagnosed glioblastoma patients receiving carmustine wafers followed by radiation and concurrent temozolomide plus rotational multiagent chemotherapy, Cancer, 115, 3501, 10.1002/cncr.24398 Chen, 2020, A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control, Sci. Adv., 6, eaba7260, 10.1126/sciadv.aba7260 Wait, 2015, Polymeric drug delivery for the treatment of glioblastoma, Neuro Oncol., 17, ii9, 10.1093/neuonc/nou360 Alfarouk, 2015, Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp, Cancer Cell Int., 15, 71, 10.1186/s12935-015-0221-1 Lathia, 2015, Cancer stem cells in glioblastoma, Genes Dev., 29, 1203, 10.1101/gad.261982.115 Jonas, 2016, First In Vivo Testing of Compounds Targeting Group 3 Medulloblastomas Using an Implantable Microdevice as a New Paradigm for Drug Development, J. Biomed. Nanotechnol., 12, 1297, 10.1166/jbn.2016.2262 Scott, 2011, Intracranial microcapsule drug delivery device for the treatment of an experimental gliosarcoma model, Biomaterials, 32, 2532, 10.1016/j.biomaterials.2010.12.020 Wang, 2022, Silk Microneedle Patch Capable of On-Demand Multidrug Delivery to the Brain for Glioblastoma Treatment, Adv. Mater., 34 Masi, 2012, Intracranial MEMS based temozolomide delivery in a 9L rat gliosarcoma model, Biomaterials, 33, 5768, 10.1016/j.biomaterials.2012.04.048 Lee, 2019, Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors, Nat. Commun., 10, 5205, 10.1038/s41467-019-13198-y Yao, 2022, Self-Powered, Implantable, and Wirelessly Controlled NO Generation System for Intracranial Neuroglioma Therapy, Adv. Mater., 34, 10.1002/adma.202205881 Su, 2021, PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application, Drug Deliv., 28, 1397, 10.1080/10717544.2021.1938756 Alghamdi, 2021, Local delivery to malignant brain tumors: potential biomaterial-based therapeutic/adjuvant strategies, Biomater. Sci., 9, 6037, 10.1039/D1BM00896J Cheng, 2014, Multifunctional nanoparticles for brain tumor imaging and therapy, Adv. Drug Deliv. Rev., 66, 42, 10.1016/j.addr.2013.09.006 McCrorie, 2020, Biomedical engineering approaches to enhance therapeutic delivery for malignant glioma, J. Contr. Release, 328, 917, 10.1016/j.jconrel.2020.11.022 Nduom, 2012, Nanotechnology applications for glioblastoma, Neurosurg. Clin., 23, 439, 10.1016/j.nec.2012.04.006 Page, 2021, The PRISMA 2020 statement: an updated guideline for reporting systematic reviews, BMJ, 372, n71, 10.1136/bmj.n71 Mahmood, 2011, Optimizing clinical performance and geometrical robustness of a new electrode device for intracranial tumor electroporation, Bioelectrochemistry, 81, 10, 10.1016/j.bioelechem.2010.12.002 Shapira-Furman, 2019, Biodegradable wafers releasing Temozolomide and Carmustine for the treatment of brain cancer, J. Contr. Release, 295, 93, 10.1016/j.jconrel.2018.12.048 Pan, 2022, Biodegradable controlled-release polymer containing butylidenephthalide to treat a recurrent cervical spine glioblastoma with promising result: a compassionate trial report, Anti Cancer Drugs, 33, 394, 10.1097/CAD.0000000000001275 Ranganath, 2009, Hydrogel matrix entrapping PLGA-paclitaxel microspheres: drug delivery with near zero-order release and implantability advantages for malignant brain tumour chemotherapy, Pharm. Res. (N. Y.), 26, 2101, 10.1007/s11095-009-9922-2 Carpentier, 2016, Clinical trial of blood-brain barrier disruption by pulsed ultrasound, Sci. Transl. Med., 8, 343re2, 10.1126/scitranslmed.aaf6086 Kim, 2012, MRI-monitored long-term therapeutic hydrogel system for brain tumors without surgical resection, Biomaterials, 33, 4836, 10.1016/j.biomaterials.2012.03.048 Shi, 2016, Convection-enhancement delivery of liposomal formulation of oxaliplatin shows less toxicity than oxaliplatin yet maintains a similar median survival time in F98 glioma-bearing rat model, Invest. N. Drugs, 34, 269, 10.1007/s10637-016-0340-0 Upadhyay, 2014, Intracranial microcapsule chemotherapy delivery for the localized treatment of rodent metastatic breast adenocarcinoma in the brain, Proc. Natl. Acad. Sci. USA, 111, 16071, 10.1073/pnas.1313420110 Kim, 2007, Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 9L flank model, J. Contr. Release, 123, 172, 10.1016/j.jconrel.2007.08.003 Giussani, 2003, Local intracerebral delivery of endogenous inhibitors by osmotic minipumps effectively suppresses glioma growth in vivo, Cancer Res., 63, 2499 Wang, 2018, Intratumoral delivery of bortezomib: impact on survival in an intracranial glioma tumor model, J. Neurosurg., 128, 695, 10.3171/2016.11.JNS161212 Sonabend, 2014, Convection-enhanced delivery of etoposide is effective against murine proneural glioblastoma, Neuro Oncol., 16, 1210, 10.1093/neuonc/nou026 Wang, 2015, Effects of convection-enhanced delivery of bevacizumab on survival of glioma-bearing animals, Neurosurg. Focus, 38, E8, 10.3171/2015.1.FOCUS14743 Yoshimura, 2012, The effects of temozolomide delivered by prolonged intracerebral microinfusion against the rat brainstem GBM allograft model, Childs Nerv. Syst., 28, 707, 10.1007/s00381-012-1732-x Zamykal, 2015, Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms, Neuro Oncol., 17, 1076, 10.1093/neuonc/nou344 Mairs, 2000, Comparison of different methods of intracerebral administration of radioiododeoxyuridine for glioma therapy using a rat model, Br. J. Cancer, 82, 74, 10.1054/bjoc.1999.0879 Ding, 2010, Convection-enhanced delivery of free gadolinium with the recombinant immunotoxin MR1-1, J. Neuro Oncol., 98, 1, 10.1007/s11060-009-0046-7 Ding, 2010, Long-term safety of combined intracerebral delivery of free gadolinium and targeted chemotherapeutic agent PRX321, Neurol. Res., 32, 810 Huang, 2015, A novel brain metastasis xenograft model for convection-enhanced delivery of targeted toxins via a micro-osmotic pump system enabled for real-time bioluminescence imaging, Mol. Med. Rep., 12, 5163, 10.3892/mmr.2015.4111 Ozawa, 2005, Toxicity, biodistribution, and convection-enhanced delivery of the boronated porphyrin BOPP in the 9L intracerebral rat glioma model, Int. J. Radiat. Oncol. Biol. Phys., 63, 247, 10.1016/j.ijrobp.2005.05.030 Rousseau, 2009, Efficacy of intracerebral delivery of Carboplatin in combination with photon irradiation for treatment of F98 glioma-bearing rats, Int. J. Radiat. Oncol. Biol. Phys., 73, 530, 10.1016/j.ijrobp.2008.09.018 Rechberger, 2020, Evaluating infusate parameters for direct drug delivery to the brainstem: a comparative study of convection-enhanced delivery versus osmotic pump delivery, Neurosurg. Focus, 48, E2, 10.3171/2019.10.FOCUS19703 D'Amico, 2019, Validation of an effective implantable pump-infusion system for chronic convection-enhanced delivery of intracerebral topotecan in a large animal model, J. Neurosurg., 151, 1 Halle, 2016, Convection-enhanced delivery of an anti-miR is well-tolerated, preserves anti-miR stability and causes efficient target de-repression: a proof of concept, J. Neuro Oncol., 126, 47, 10.1007/s11060-015-1947-2 Thisgaard, 2016, Highly Effective Auger-Electron Therapy in an Orthotopic Glioblastoma Xenograft Model using Convection-Enhanced Delivery, Theranostics, 6, 2278, 10.7150/thno.15898 Sonabend, 2011, Prolonged intracerebral convection-enhanced delivery of topotecan with a subcutaneously implantable infusion pump, Neuro Oncol., 13, 886, 10.1093/neuonc/nor051 Fan, 2015, Continuous intraputamenal convection-enhanced delivery in adult rhesus macaques, J. Neurosurg., 123, 1569, 10.3171/2015.1.JNS132345 Spinazzi, 2022, Chronic convection-enhanced delivery of topotecan for patients with recurrent glioblastoma: a first-in-patient, single-centre, single-arm, phase 1b trial, Lancet Oncol., 23, 1409, 10.1016/S1470-2045(22)00599-X Jonas, 2015, An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors, Sci. Transl. Med., 7, 284ra57, 10.1126/scitranslmed.3010564 Richards Grayson, 2003, Multi-pulse drug delivery from a resorbable polymeric microchip device, Nat. Mater., 2, 767, 10.1038/nmat998 2023 2020 Almoshari, 2022, Osmotic Pump Drug Delivery Systems-A Comprehensive Review, Pharmaceuticals, 15, 1430, 10.3390/ph15111430 Klespitz, 2014, Peristaltic pumps — A review on working and control possibilities, 191 Das, 2020, Biointegrated and Wirelessly Powered Implantable Brain Devices: A Review, IEEE Trans. Biomed. Circuits Syst., 14, 343, 10.1109/TBCAS.2020.2966920 Marcucci, 2021, Breaching the Blood–Brain Tumor Barrier for Tumor Therapy, Cancers, 13, 2391, 10.3390/cancers13102391 Bayat Mokhtari, 2017, Combination therapy in combating cancer, Oncotarget, 8, 38022, 10.18632/oncotarget.16723 Al-Lazikani, 2012, Combinatorial drug therapy for cancer in the post-genomic era, Nat. Biotechnol., 30, 679, 10.1038/nbt.2284 Falchook, 2010, A phase I study of bevacizumab in combination with sunitinib, sorafenib, and erlotinib plus cetuximab, and trastuzumab plus lapatinib, J. Clin. Oncol., 28, 2512, 10.1200/jco.2010.28.15_suppl.2512 Taal, 2014, Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial, Lancet Oncol., 15, 943, 10.1016/S1470-2045(14)70314-6 Friedman, 2009, Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma, J. Clin. Oncol., 27, 4733, 10.1200/JCO.2008.19.8721 Bota, 2018, Phase II study of ERC1671 plus bevacizumab versus bevacizumab plus placebo in recurrent glioblastoma: interim results and correlations with CD4(+) T-lymphocyte counts, CNS Oncol., 7, Cns22, 10.2217/cns-2018-0009 Dymova, 2021, Molecular Mechanisms of Drug Resistance in Glioblastoma, Int. J. Mol. Sci., 22, 6385, 10.3390/ijms22126385 Aldape, 2019, Challenges to curing primary brain tumours, Nat. Rev. Clin. Oncol., 16, 509, 10.1038/s41571-019-0177-5 Neftel, 2019, An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma, Cell, 178, 835, 10.1016/j.cell.2019.06.024 Becker, 2021, Tumor Heterogeneity in Glioblastomas: From Light Microscopy to Molecular Pathology, Cancers, 13, 10.3390/cancers13040761 Aquilanti, 2022, Current therapeutic options for glioblastoma and future perspectives, Expet Opin. Pharmacother., 23, 1629, 10.1080/14656566.2022.2125302 Prados, 2015, Toward precision medicine in glioblastoma: the promise and the challenges, Neuro Oncol., 17, 1051, 10.1093/neuonc/nov031 Hoare, 2008, Hydrogels in drug delivery: Progress and challenges, Polymer, 49, 1993, 10.1016/j.polymer.2008.01.027 Rapeaux, 2021, Implantable brain machine interfaces: first-in-human studies, technology challenges and trends, Curr. Opin. Biotechnol., 72, 102, 10.1016/j.copbio.2021.10.001 Chaichana, 2013, Multiple resections for patients with glioblastoma: prolonging survival, J. Neurosurg., 118, 812, 10.3171/2012.9.JNS1277 Jankun, 2012, Challenging delivery of VLHL NS plasminogen activator inhibitor-1 by osmotic pumps in diabetic mouse: A case report, Exp. Ther. Med., 4, 661, 10.3892/etm.2012.639 Di Trani, 2022, Extending drug release from implants via transcutaneous refilling with solid therapeutics, Adv. Ther., 5 Gómez-Oliva, 2021, Evolution of Experimental Models in the Study of Glioblastoma: Toward Finding Efficient Treatments, Front. Oncol., 10, 10.3389/fonc.2020.614295 Kijima, 2017, Mouse Models of Glioblastoma Ernst, 2009, Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival, Clin. Cancer Res., 15, 6541, 10.1158/1078-0432.CCR-09-0695 Haddad, 2021, Mouse models of glioblastoma for the evaluation of novel therapeutic strategies, Neurooncol. Adv., 3, vdab100 Welniak-Kaminska, 2019, Volumes of brain structures in captive wild-type and laboratory rats: 7T magnetic resonance in vivo automatic atlas-based study, PLoS One, 14, 10.1371/journal.pone.0215348 Yu, 2014, Deciphering laminar-specific neural inputs with line-scanning fMRI, Nat. Methods, 11, 55, 10.1038/nmeth.2730 2023